Long Wavelength Approximations

From WikiWaves
Revision as of 19:55, 11 February 2010 by Meylan (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
Wave and Wave Body Interactions
Current Chapter Long Wavelength Approximations
Next Chapter Wave Scattering By A Vertical Circular Cylinder
Previous Chapter Linear Wave-Body Interaction



Introduction

Very frequently the length of ambient waves [math] \lambda \,[/math] is large compared to the dimension of floating bodies. For example the length of a wave with period [math] T=10 \mbox{s}\,[/math] is [math] \lambda \simeq T^2 + \frac{T^2}{2} \simeq 150\mbox{m} \,[/math]. The beam of a ship with length [math] L=100\mbox{m}\,[/math] can be [math]20\mbox{m}\,[/math] as is the case for the diameter of the leg of an offshore platform.

GI Taylor's formula

Consider a flow field given by

[math] U(x,t):\ \mbox{Velocity of ambient unidirectional flow} \,[/math]

[math] P(x,t):\ \mbox{Pressure corresponding to} \ U(x,t) \,[/math]

[math] \lambda \sim \frac{|U|}{|\nabla U|} \gg B \ = \ \mbox{Body characteristic dimension} \,[/math]

In the absence of viscous effects and to leading order for [math]\lambda \gg B \,[/math]:

[math] F_x = - \left( \forall + \frac{A_{11}}{\rho} \right) \left. \frac{\partial P}{\partial x} \right|_{x=0} [/math]

where

[math] \ F_x: \ \mbox{Force in x-direction} \,[/math]
[math]\ \forall: \ \mbox{Body displacement}\,[/math]
[math] \ A_{11}: \ \mbox{Surge added mass} \,[/math]

Derivation using Euler's equations

An alternative form of GI Taylor's formula for a fixed body follows from Euler's equations:

[math] \frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} \simeq - \frac{1}{\rho} \frac{\partial P}{\partial x} [/math]

Thus:

[math] F_x = \left( \rho \forall + A_{11} \right) + \left( \frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} \right)_{x=0} [/math]

If the body is also translating in the x-direction with displacement [math]x_1(t)\,[/math] then the total force becomes

[math] \ F_x = \left( \rho\forall+A_{11} \right) \left( \frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} \right) - A_{11} \frac{\mathrm{d}^2x_1(t)}{\mathrm{d}t^2} [/math]

Often, when the ambient velocity [math] U\,[/math] is arising from plane progressive waves, [math] \left| U \frac{\partial U}{\partial x} \right| = 0(A^2) \,[/math] and is omitted. Note that [math] U\,[/math] does not include disturbance effects due to the body.

Applications of GI Taylor's formula in wave-body interactions

Archimedean hydrostatics

[math] P=-\rho g z, \quad \frac{\partial P}{\partial z} = - \rho g \,[/math]
[math] F_z = - ( \forall + \phi ) \frac{\partial P}{\partial z} = \rho g \forall [/math]
[math] \phi: \ \mbox{no added mass since there is no flow} [/math]

So Archimedes' formula is a special case of GI Taylor when there is no flow. This offers an intuitive meaning to the term that includes the body displacement.

Regular waves over a circle fixed under the free surface

[math] \Phi_I = \mathrm{Re} \left\{ \frac{i g A}{\omega} e^{kz-ikx+i\omega t} \right\}, \quad k=\frac{\omega^2}{g} \, [/math]
[math]u=\frac{\partial \Phi_I}{\partial x} = \mathrm{Re} \left\{ \frac{i g A}{\omega} (-i k) e^{k z - i k x + i \omega t } \right \} [/math]
[math] \mathrm{Re} \left\{ \omega A e^{ - k h +i \omega t} \right\}_{x=0,z=-h} [/math]

So the horizontal force on the circle is:

[math]F_x = \left( \forall + \frac{A_{11}}{\rho} \right) \frac{\partial u}{\partial t} + O \left( z^2 \right) [/math]
[math] \forall =\pi a^2, \quad A_{11} = \pi \rho a^2 \,[/math]
[math] \frac{\partial u}{\partial t} = \mathrm{Re} \left\{ i\omega^2 e^{-kh + i \omega t} \right\} [/math]

Thus:

[math] F_x = - 2 \pi a^2 \omega^2 A e^{-k h} \sin \omega t \,[/math]

We can derive the vertical force along very similar lines. It is simply [math]90^\circ\,[/math] out of phase relative to [math]F_x\,[/math] with the same modulus.

Horizontal force on a fixed circular cylinder of draft [math]T\,[/math]

This case arises frequently in wave interactions with floating offshore platforms.

Here we will evaluate [math] \frac{\partial u}{\partial t} \,[/math] on the axis of the platform and use a strip wise integration to evaluate the total hydrodynamic force.

[math] u = \frac{\partial \Phi}{\partial x} = \mathrm{Re} \left\{ \frac{i g A}{\omega} (- i k) e^{kz-i k x + i\omega t} \right\} [/math]
[math] = \mathrm{Re} \left\{ \omega A e^{kz+i\omega t} \right\}_{x=0} \,[/math]
[math] \frac{\partial u}{\partial t} (z) = \mathrm{Re} \left\{ \omega A ( i \omega) e^{kz+i\omega t} \right\} [/math]
[math] = - \omega^2 A e^{kz} \sin \omega t \,[/math]

The differential horizontal force over a strip [math] \mathrm{d} z \,[/math] at a depth [math] z \,[/math] becomes:

[math] \mathrm{d}F_z = \rho ( \forall + A_{11} ) \frac{\partial u}{\partial t} \mathrm{d} z \,[/math]
[math] \rho ( \pi a^2 + \pi a^2 ) \frac{\partial u}{\partial t} \mathrm{d} z \,[/math]
[math] 2 \pi \rho a^2 \left( - \omega^2 A e^{kz} \right) \sin \omega t \mathrm{d} z [/math]

The total horizontal force over a truncated cylinder of draft [math]T\,[/math] becomes:

[math] F_x = \int_{-T}^{0} \mathrm{d}Z \mathrm{d}F = -2\pi\rho a^2 \omega^2 A \sin \omega t \int_{-T}^0 e^{kz} \mathrm{d}z [/math]
[math] X_1 \equiv F_x = - 2 \pi \rho a^2 \omega^2 A \sin \omega t \cdot \frac{1-e^{-kT}}{k} [/math]

This is a very useful and practical result. It provides an estimate of the surge exciting force on one leg of a possibly multi-leg platform as [math] T \to \infty; \quad \frac{1-e^{-kT}}{k} \to \frac{1}{k}\,[/math]

Horizontal force on multiple vertical cylinders in any arrangement

The proof is essentially based on a phasing argument. Relative to the reference frame,

[math] \Phi_I = \mathrm{Re} \left\{ \frac{i g A}{\omega} e^{kz-ikx + i\omega t} \right\} \,[/math]

Expressing the incident wave relative to the local frames by introducing the phase factors,

[math] \mathbf{P}_i = e^{-ikx_i} [/math]

and letting

[math] x = x_i + \xi_i \,[/math]

Then relative to the i-th leg,

[math] \Phi_I^{(i)} = \mathrm{Re} \left\{ \frac{ i g A}{\omega} e^{kz - ik\xi_i + i\omega t} \mathbf{P}_i \right\} \quad i=1,\cdots,N [/math]

Ignoring interactions between legs, which is a good approximation in long waves, the total exciting force on an n-cylinder platform is

[math] \mathbf{X}_1^N = \sum_{i=1}^N \mathbf{P}_i \mathbf{X}_1 \,[/math]

The above expression gives the complex amplitude of the force with [math]\mathbf{X}_1\,[/math] given in the single cylinder case.

The above technique may be easily extended to estimate the Sway force and Yaw moment on n-cylinders with little extra effort.

Surge exciting force on a 2D section

[math] \Phi_I = \mathrm{Re} \left\{ \frac{ i g A}{\omega} e^{kz-ikx+i\omega t} \right\} \,[/math]
[math] u=\mathrm{Re} \left\{ \frac{ i g A}{\omega} (- i k ) e^{kz-ikx+i\omega t} \right\} \,[/math]
[math] \frac{\partial u}{\partial t} = \mathrm{Re} \left\{ \frac{ i g A}{\omega} \left(- i \frac{\omega^2}{g} \right) (i\omega) e^{i\omega t} \right\}_{x=0, z=0} \,[/math]
[math] = \mathrm{Re} \left\{ i \omega^2 A e^{i\omega t} \right\} = -\omega^2 A \sin \omega t \,[/math]
[math] \mathbf{X}_1 = \left( \rho \forall + A_{11} \right) \frac{\partial u}{\partial t} = - \omega^2 A \sin \omega t ( \rho \forall + A_{11} ) \, [/math]

If the body section is a circle with radius [math] a\,[/math],

[math] \rho \forall = A_{11} = \pi\rho \frac{a^2}{2} \,[/math]

So in long waves, the surge exciting force is equally divided between the Froude-Krylov and the diffraction components. This is not the case for Heave!

Heave exciting force on a surface piercing section

In long waves, the leading order effect in the exciting force is the hydrostatic contribution

[math]\mathbf{X}_i \sim \rho g A_w A \,[/math]

where [math]A_w\,[/math] is the body water plane area in 2D or 3D. [math]A\,[/math] is the wave amplitude. This can be shown to be the leading order contribution from the Froude-Krylov force:

[math] \mathbf{X}_3^{FK} = \rho g A \iint_{S_B} e^{kz-ikx} n_3 \mathrm{d}S \,[/math]

Using the Taylor series expansion,

[math] e^{kz-ikx} = 1 + ( kz - ikx ) + O ( kB )^2 \,[/math]

It is easy to verify that [math]\mathbf{X}_3 \to \rho g A A_w \,[/math].

The scattering contribution is of order [math] kB\,[/math]. For submerged bodies, [math] \mathbf{X}_3^{FK}=O(kB)\,[/math].


This article is based on the MIT open course notes and the original article can be found here

Ocean Wave Interaction with Ships and Offshore Energy Systems