Properties of the Linear Schrodinger Equation: Difference between revisions
(13 intermediate revisions by 2 users not shown) | |||
Line 5: | Line 5: | ||
}} | }} | ||
The linear | The linear Schrödinger equation | ||
<center><math> | <center><math> | ||
\partial_{x}^{2}w+uw=-\lambda w | \partial_{x}^{2}w+uw=-\lambda w | ||
Line 12: | Line 12: | ||
first are waves and the second are bound solutions. It is well known that | first are waves and the second are bound solutions. It is well known that | ||
there are at most a finite number of bound solutions (provided <math>u\rightarrow0</math> | there are at most a finite number of bound solutions (provided <math>u\rightarrow0</math> | ||
as <math>x\pm\infty</math> sufficiently rapidly) and a continum of solutions for the | as <math>x\rightarrow\pm\infty</math> sufficiently rapidly) and a continum of solutions for the | ||
incident waves. This is easiest seen through the following examples | incident waves. This is easiest seen through the following examples | ||
Line 32: | Line 32: | ||
\partial_{x}^{2}w+ u_0\delta(x) w=-\lambda w | \partial_{x}^{2}w+ u_0\delta(x) w=-\lambda w | ||
</math></center> | </math></center> | ||
We consider the | |||
case we write <math>\lambda=-k^{2}</math> and we obtain | ===Case when <math>\lambda<0</math>=== | ||
We consider the cases of <math>\lambda<0</math> and <math>\lambda>0</math> separately. For the first | |||
case we write <math>\lambda=-k^{2}</math> and we obtain (as <math>w\rightarrow0</math> as <math>x\rightarrow\pm\infty</math>) | |||
<center><math> | <center><math> | ||
w\left( x\right) =\left\{ | w\left( x\right) =\left\{ | ||
Line 47: | Line 50: | ||
+u_0 w\left( 0\right) =0.</math> This final condition is obtained by integrating `across' zero as follows | +u_0 w\left( 0\right) =0.</math> This final condition is obtained by integrating `across' zero as follows | ||
<center><math>\begin{align} | <center><math>\begin{align} | ||
\int_{0^{-}}^{0^{+}} \left(\partial_x^2 w +\delta(x) w + \lambda w \right) \ \mathrm{d}x = 0. | \int_{0^{-}}^{0^{+}} \left(\partial_x^2 w +u_0\delta(x) w + \lambda w \right) \ \mathrm{d}x = 0. | ||
\end{align} | \end{align} | ||
</math></center> | </math></center> | ||
Line 59: | Line 62: | ||
<center><math> | <center><math> | ||
2\int_{0}^{\infty}\left( ae^{-u_{0}x/2}\right) ^{2}\mathrm{d}x=1 | 2\int_{0}^{\infty}\left( ae^{-u_{0}x/2}\right) ^{2}\mathrm{d}x=1 | ||
</math></center> | </math> | ||
<math> | |||
2\left( a^2\dfrac{e^{-u_{0}x}}{-u_{0}}\right)\Bigg|_{0}^{\infty}=1 | |||
</math> | |||
<math>\dfrac{2a^2}{u_{0}}=1</math></center> | |||
which means that <math>a=\sqrt{u_{0}/2}.</math> Therefore, there is only one discrete | which means that <math>a=\sqrt{u_{0}/2}.</math> Therefore, there is only one discrete | ||
spectral point which we denote by <math>k_{1}=u_{0}/2</math> | spectral point which we denote by <math>k_{1}=u_{0}/2</math> | ||
Line 71: | Line 78: | ||
\right. | \right. | ||
</math></center> | </math></center> | ||
=== Case when <math>\lambda>0</math> === | |||
The continuous eigenfunctions correspond to <math>\lambda=k^{2}>0</math> are of the form | The continuous eigenfunctions correspond to <math>\lambda=k^{2}>0</math> are of the form | ||
<center><math> | <center><math> | ||
Line 77: | Line 87: | ||
\mathrm{e}^{-\mathrm{i}kx}+r\mathrm{e}^{\mathrm{i}kx}, & x<0\\ | \mathrm{e}^{-\mathrm{i}kx}+r\mathrm{e}^{\mathrm{i}kx}, & x<0\\ | ||
t\mathrm{e}^{-\mathrm{i}kx}, & x>0 | |||
\end{matrix} | \end{matrix} | ||
\right. | \right. | ||
</math></center> | </math></center> | ||
where <math>\mathrm{e}^{-\mathrm{i}kx}</math> is the incident wave, <math>r\mathrm{e}^{\mathrm{i}kx}</math> is the reflected wave, and <math>t\mathrm{e}^{-\mathrm{i}kx}</math> is the transmitted wave. | |||
Again we have the conditions that <math>w</math> must be continuous at <math>0</math> and | Again we have the conditions that <math>w</math> must be continuous at <math>0</math> and | ||
<math>\partial_{x}w\left( 0^{+}\right) -\partial_{x}w\left( 0^{-}\right) | <math>\partial_{x}w\left( 0^{+}\right) -\partial_{x}w\left( 0^{-}\right) | ||
+u_{0}w\left( 0\right) =0.</math> This gives us | +u_{0}w\left( 0\right) =0.</math> This gives us | ||
<center><math>\begin{matrix} | <center><math>\begin{matrix} | ||
1+r & = | 1+r & =t\\ | ||
- | -ikt+ik-ikr & =-tu_{0} | ||
\end{matrix}</math></center> | \end{matrix}</math></center> | ||
which has solution | which has solution | ||
<center><math>\begin{matrix} | <center><math>\begin{matrix} | ||
r & =\frac{u_{0}}{2ik-u_{0}}\\ | r & =\frac{u_{0}}{2ik-u_{0}}\\ | ||
t & =\frac{2ik}{2ik-u_{0}} | |||
\end{matrix}</math></center> | \end{matrix}</math></center> | ||
Line 102: | Line 114: | ||
\begin{matrix} | \begin{matrix} | ||
0 & x\notin\left[ -\ | 0 & x\notin\left[ -\zeta,\zeta\right] \\ | ||
b & x\in\left[ -\ | b & x\in\left[ -\zeta,\zeta\right] | ||
\end{matrix} | \end{matrix} | ||
\right. | \right. | ||
Line 116: | Line 128: | ||
w\left( x\right) =\left\{ | w\left( x\right) =\left\{ | ||
\begin{matrix} | \begin{matrix} | ||
a_{1}e^{kx}, & x<-\ | a_{1}e^{kx}, & x<-\zeta,\\ | ||
b_{1}\cos\kappa x+b_{2}\sin\kappa x, & -\ | b_{1}\cos\kappa x+b_{2}\sin\kappa x, & -\zeta< x <\zeta,\\ | ||
a_{2}e^{-kx}, & x>\ | a_{2}e^{-kx}, & x>\zeta, | ||
\end{matrix} | \end{matrix} | ||
\right. | \right. | ||
Line 124: | Line 136: | ||
where <math>\kappa=\sqrt{b-k^{2}}</math> which means that <math>0\leq k\leq\sqrt{b}</math> (there is | where <math>\kappa=\sqrt{b-k^{2}}</math> which means that <math>0\leq k\leq\sqrt{b}</math> (there is | ||
no solution for <math>k>\sqrt{b}).</math> We then match <math>w</math> and its derivative at | no solution for <math>k>\sqrt{b}).</math> We then match <math>w</math> and its derivative at | ||
<math>x=\pm\ | <math>x=\pm\zeta</math> to solve for <math>a</math> and <math>b</math>. This leads to two system of | ||
equations, one for the even (<math>a_{1}=a_{2}</math> and <math>b_{2}=0</math> ) and one for the odd | |||
solutions (<math>a_{1}=-a_{2}</math> and <math>b_{1}=0)</math>. The solution for the even solutions | solutions (<math>a_{1}=-a_{2}</math> and <math>b_{1}=0)</math>. The solution for the even solutions | ||
is | is | ||
Line 131: | Line 143: | ||
w\left( x\right) =\left\{ | w\left( x\right) =\left\{ | ||
\begin{matrix} | \begin{matrix} | ||
a_{1}e^{kx}, & x<-\ | a_{1}e^{kx}, & x<-\zeta,\\ | ||
b_{1}\cos\kappa, | b_{1}\cos\kappa x, & -\zeta< x <\zeta,\\ | ||
a_{1}e^{-kx}, & x>\ | a_{1}e^{-kx}, & x>\zeta, | ||
\end{matrix} | \end{matrix} | ||
\right. | \right. | ||
</math></center> | </math></center> | ||
If we impose the condition that the function and its derivative are continuous at | If we impose the condition that the function and its derivative are continuous at | ||
<math>x=\pm\ | <math>x=\pm\zeta</math> we obtain the following equation | ||
<center><math> | <center><math> | ||
\left( | \left( | ||
\begin{matrix} | \begin{matrix} | ||
e^{-k\ | e^{-k\zeta} & -\cos\kappa\zeta\\ | ||
ke^{-k\ | ke^{-k\zeta} & -\kappa\sin\kappa\zeta | ||
\end{matrix} | \end{matrix} | ||
\right) \left( | \right) \left( | ||
Line 165: | Line 177: | ||
\begin{matrix} | \begin{matrix} | ||
e^{-k\ | e^{-k\zeta} & -\cos\kappa\zeta\\ | ||
ke^{-k\ | ke^{-k\zeta} & -\kappa\sin\kappa\zeta | ||
\end{matrix} | \end{matrix} | ||
\right) =0 | \right) =0 | ||
Line 172: | Line 184: | ||
which gives us the equation | which gives us the equation | ||
<center><math> | <center><math> | ||
-\kappa e^{-k\ | -\kappa e^{-k\zeta}\sin\kappa\zeta+k\cos\kappa\zeta | ||
e^{-k\ | e^{-k\zeta}=0 | ||
</math></center> | </math></center> | ||
or | or | ||
<center><math> | <center><math> | ||
\tan\kappa\ | \tan\kappa\zeta=\frac{k}{\kappa} | ||
</math></center> | </math></center> | ||
We know that <math>0<\kappa<\sqrt{b}</math> and if we plot this we see that we obtain a | We know that <math>0<\kappa<\sqrt{b}</math> and if we plot this we see that we obtain a | ||
Line 186: | Line 198: | ||
w\left( x\right) =\left\{ | w\left( x\right) =\left\{ | ||
\begin{matrix} | \begin{matrix} | ||
a_{1}e^{kx}, & x<-\ | a_{1}e^{kx}, & x <-\zeta,\\ | ||
b_{2}\sin\kappa x, & -\ | b_{2}\sin\kappa x, & -\zeta< x <\zeta,\\ | ||
-a_{1}e^{-kx} & x>\ | -a_{1}e^{-kx} & x > \zeta, | ||
\end{matrix} | \end{matrix} | ||
\right. | \right. | ||
</math></center> | </math></center> | ||
and again imposing the condition that the solution and its derivative is continuous | and again imposing the condition that the solution and its derivative is continuous | ||
at <math>x=\pm\ | at <math>x=\pm\zeta</math> gives | ||
<center><math> | <center><math> | ||
\left( | \left( | ||
\begin{matrix} | \begin{matrix} | ||
e^{-k\ | e^{-k\zeta} & \sin\kappa\zeta\\ | ||
ke^{-k\ | ke^{-k\zeta} & -\kappa\cos\kappa\zeta | ||
\end{matrix} | \end{matrix} | ||
\right) \left( | \right) \left( | ||
Line 220: | Line 232: | ||
\begin{matrix} | \begin{matrix} | ||
e^{-k\ | e^{-k\zeta} & \sin\kappa\zeta\\ | ||
ke^{-k\ | ke^{-k\zeta} & -\kappa\cos\kappa\zeta | ||
\end{matrix} | \end{matrix} | ||
\right) =0 | \right) =0 | ||
Line 227: | Line 239: | ||
which gives us the equation | which gives us the equation | ||
<center><math> | <center><math> | ||
\kappa e^{-k\ | \kappa e^{-k\zeta}a\cos\kappa\zeta+k\sin\kappa\zeta e^{-k\zeta}=0 | ||
</math></center> | </math></center> | ||
or | or | ||
<center><math> | <center><math> | ||
\tan\ | \tan\zeta\kappa=-\frac{\kappa}{k} | ||
</math></center> | </math></center> | ||
Line 241: | Line 253: | ||
\begin{matrix} | \begin{matrix} | ||
\mathrm{e}^{-\mathrm{i}kx}+r\mathrm{e}^{\mathrm{i}kx}, & x<-\ | \mathrm{e}^{-\mathrm{i}kx}+r\mathrm{e}^{\mathrm{i}kx}, & x <-\zeta\\ | ||
b_{1}\cos\kappa x+b_{2}\sin\kappa x & -\ | b_{1}\cos\kappa x+b_{2}\sin\kappa x & -\zeta< x <\zeta\\ | ||
t\mathrm{e}^{-\mathrm{i}kx} & x>\zeta | |||
\end{matrix} | \end{matrix} | ||
\right. | \right. | ||
</math></center> | </math></center> | ||
where <math>\kappa=\sqrt{b+k^{2}}.</math> Matching <math>w</math> and its | where <math>\kappa=\sqrt{b+k^{2}}.</math> Matching <math>w</math> and its derivatives at <math>x=\pm\zeta</math> we | ||
obtain | obtain | ||
<center><math> | <center><math> | ||
Line 253: | Line 265: | ||
\begin{matrix} | \begin{matrix} | ||
-\mathrm{e}^{-\mathrm{i}k\ | -\mathrm{e}^{-\mathrm{i}k\zeta} & \cos\kappa\zeta & -\sin\kappa\zeta & 0\\ | ||
ik\mathrm{e}^{-\mathrm{i}k\ | ik\mathrm{e}^{-\mathrm{i}k\zeta} & \kappa\sin\kappa\zeta & \kappa\cos\kappa | ||
\ | \zeta & 0\\ | ||
0 & \cos\kappa\ | 0 & \cos\kappa\zeta & \sin\kappa\zeta & -\mathrm{e}^{-\mathrm{i}k\zeta}\\ | ||
0 & -\kappa\sin\kappa\ | 0 & -\kappa\sin\kappa\zeta & \kappa\cos\kappa\zeta & | ||
ik\mathrm{e}^{-\mathrm{i}k\ | ik\mathrm{e}^{-\mathrm{i}k\zeta} | ||
\end{matrix} | \end{matrix} | ||
\right) \left( | \right) \left( | ||
Line 266: | Line 278: | ||
b_{1}\\ | b_{1}\\ | ||
b_{2}\\ | b_{2}\\ | ||
t | |||
\end{matrix} | \end{matrix} | ||
\right) =\left( | \right) =\left( | ||
Line 278: | Line 290: | ||
\right) | \right) | ||
</math></center> | </math></center> | ||
== Lecture Videos == | |||
=== Part 1 === | |||
{{#ev:youtube|anAThvCcpNw}} | |||
=== Part 2 === | |||
{{#ev:youtube|SDPIx42VjLQ}} | |||
=== Part 3 === | |||
{{#ev:youtube|OUmjeLZWr3M}} | |||
=== Part 4 === | |||
{{#ev:youtube|hIfcO3a8_XU}} | |||
=== Part 5 === | |||
{{#ev:youtube|z13lKSTficA}} | |||
=== Part 6 === | |||
{{#ev:youtube|2XlQpEscxE4}} | |||
=== Part 7 === | |||
{{#ev:youtube|iMMQ4NUdXNc}} | |||
=== Part 8 === | |||
{{#ev:youtube|0F_dINNxMlw}} |
Latest revision as of 09:27, 28 September 2025
Nonlinear PDE's Course | |
---|---|
Current Topic | Properties of the Linear Schrodinger Equation |
Next Topic | Connection betwen KdV and the Schrodinger Equation |
Previous Topic | Introduction to the Inverse Scattering Transform |
The linear Schrödinger equation
has two kinds of solutions for [math]\displaystyle{ u\rightarrow0 }[/math] as [math]\displaystyle{ x\rightarrow\pm\infty. }[/math] The first are waves and the second are bound solutions. It is well known that there are at most a finite number of bound solutions (provided [math]\displaystyle{ u\rightarrow0 }[/math] as [math]\displaystyle{ x\rightarrow\pm\infty }[/math] sufficiently rapidly) and a continum of solutions for the incident waves. This is easiest seen through the following examples
Example 1: [math]\displaystyle{ \delta }[/math] function potential
We consider here the case when [math]\displaystyle{ u\left( x,0\right) = u_0 \delta\left( x\right) . }[/math] Note that this function can be thought of as the limit as of the potential
In this case we need to solve
Case when [math]\displaystyle{ \lambda\lt 0 }[/math]
We consider the cases of [math]\displaystyle{ \lambda\lt 0 }[/math] and [math]\displaystyle{ \lambda\gt 0 }[/math] separately. For the first case we write [math]\displaystyle{ \lambda=-k^{2} }[/math] and we obtain (as [math]\displaystyle{ w\rightarrow0 }[/math] as [math]\displaystyle{ x\rightarrow\pm\infty }[/math])
We have two conditions at [math]\displaystyle{ x=0, }[/math] [math]\displaystyle{ w }[/math] must be continuous at [math]\displaystyle{ 0 }[/math] and [math]\displaystyle{ \partial_{x}w\left( 0^{+}\right) -\partial_{x}w\left( 0^{-}\right) +u_0 w\left( 0\right) =0. }[/math] This final condition is obtained by integrating `across' zero as follows
This gives the condition that [math]\displaystyle{ a=b }[/math] and [math]\displaystyle{ k=u_{0}/2. }[/math] We need to normalise the eigenfunctions so that
Therefore
[math]\displaystyle{ 2\left( a^2\dfrac{e^{-u_{0}x}}{-u_{0}}\right)\Bigg|_{0}^{\infty}=1 }[/math]
[math]\displaystyle{ \dfrac{2a^2}{u_{0}}=1 }[/math]which means that [math]\displaystyle{ a=\sqrt{u_{0}/2}. }[/math] Therefore, there is only one discrete spectral point which we denote by [math]\displaystyle{ k_{1}=u_{0}/2 }[/math]
Case when [math]\displaystyle{ \lambda\gt 0 }[/math]
The continuous eigenfunctions correspond to [math]\displaystyle{ \lambda=k^{2}\gt 0 }[/math] are of the form
where [math]\displaystyle{ \mathrm{e}^{-\mathrm{i}kx} }[/math] is the incident wave, [math]\displaystyle{ r\mathrm{e}^{\mathrm{i}kx} }[/math] is the reflected wave, and [math]\displaystyle{ t\mathrm{e}^{-\mathrm{i}kx} }[/math] is the transmitted wave.
Again we have the conditions that [math]\displaystyle{ w }[/math] must be continuous at [math]\displaystyle{ 0 }[/math] and [math]\displaystyle{ \partial_{x}w\left( 0^{+}\right) -\partial_{x}w\left( 0^{-}\right) +u_{0}w\left( 0\right) =0. }[/math] This gives us
which has solution
Example 2: Hat Function Potential
The properties of the eigenfunction is perhaps seem most easily through the following example
where [math]\displaystyle{ b\gt 0. }[/math]
Case when [math]\displaystyle{ \lambda\lt 0 }[/math]
If we solve this equation for the case when [math]\displaystyle{ \lambda\lt 0, }[/math] [math]\displaystyle{ \lambda=-k^{2} }[/math] we get
where [math]\displaystyle{ \kappa=\sqrt{b-k^{2}} }[/math] which means that [math]\displaystyle{ 0\leq k\leq\sqrt{b} }[/math] (there is no solution for [math]\displaystyle{ k\gt \sqrt{b}). }[/math] We then match [math]\displaystyle{ w }[/math] and its derivative at [math]\displaystyle{ x=\pm\zeta }[/math] to solve for [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math]. This leads to two system of equations, one for the even ([math]\displaystyle{ a_{1}=a_{2} }[/math] and [math]\displaystyle{ b_{2}=0 }[/math] ) and one for the odd solutions ([math]\displaystyle{ a_{1}=-a_{2} }[/math] and [math]\displaystyle{ b_{1}=0) }[/math]. The solution for the even solutions is
If we impose the condition that the function and its derivative are continuous at [math]\displaystyle{ x=\pm\zeta }[/math] we obtain the following equation
This has non trivial solutions when
which gives us the equation
or
We know that [math]\displaystyle{ 0\lt \kappa\lt \sqrt{b} }[/math] and if we plot this we see that we obtain a finite number of solutions.
The solution for the odd solutions is
and again imposing the condition that the solution and its derivative is continuous at [math]\displaystyle{ x=\pm\zeta }[/math] gives
This can non trivial solutions when
which gives us the equation
or
Case when [math]\displaystyle{ \lambda\gt 0 }[/math]
When [math]\displaystyle{ \lambda\gt 0 }[/math] we write [math]\displaystyle{ \lambda=k^{2} }[/math] and we obtain solution
where [math]\displaystyle{ \kappa=\sqrt{b+k^{2}}. }[/math] Matching [math]\displaystyle{ w }[/math] and its derivatives at [math]\displaystyle{ x=\pm\zeta }[/math] we obtain