Properties of the Linear Schrodinger Equation: Difference between revisions
(5 intermediate revisions by the same user not shown) | |||
Line 5: | Line 5: | ||
}} | }} | ||
The linear | The linear Schrödinger equation | ||
<center><math> | <center><math> | ||
\partial_{x}^{2}w+uw=-\lambda w | \partial_{x}^{2}w+uw=-\lambda w | ||
Line 12: | Line 12: | ||
first are waves and the second are bound solutions. It is well known that | first are waves and the second are bound solutions. It is well known that | ||
there are at most a finite number of bound solutions (provided <math>u\rightarrow0</math> | there are at most a finite number of bound solutions (provided <math>u\rightarrow0</math> | ||
as <math>x\pm\infty</math> sufficiently rapidly) and a continum of solutions for the | as <math>x\rightarrow\pm\infty</math> sufficiently rapidly) and a continum of solutions for the | ||
incident waves. This is easiest seen through the following examples | incident waves. This is easiest seen through the following examples | ||
Line 32: | Line 32: | ||
\partial_{x}^{2}w+ u_0\delta(x) w=-\lambda w | \partial_{x}^{2}w+ u_0\delta(x) w=-\lambda w | ||
</math></center> | </math></center> | ||
We consider the | |||
case we write <math>\lambda=-k^{2}</math> and we obtain | ===Case when <math>\lambda<0</math>=== | ||
We consider the cases of <math>\lambda<0</math> and <math>\lambda>0</math> separately. For the first | |||
case we write <math>\lambda=-k^{2}</math> and we obtain (as <math>w\rightarrow0</math> as <math>x\rightarrow\pm\infty</math>) | |||
<center><math> | <center><math> | ||
w\left( x\right) =\left\{ | w\left( x\right) =\left\{ | ||
Line 59: | Line 62: | ||
<center><math> | <center><math> | ||
2\int_{0}^{\infty}\left( ae^{-u_{0}x/2}\right) ^{2}\mathrm{d}x=1 | 2\int_{0}^{\infty}\left( ae^{-u_{0}x/2}\right) ^{2}\mathrm{d}x=1 | ||
</math></center> | </math> | ||
<math> | |||
2\left( a^2\dfrac{e^{-u_{0}x}}{-u_{0}}\right)\Bigg|_{0}^{\infty}=1 | |||
</math> | |||
<math>\dfrac{2a^2}{u_{0}}=1</math></center> | |||
which means that <math>a=\sqrt{u_{0}/2}.</math> Therefore, there is only one discrete | which means that <math>a=\sqrt{u_{0}/2}.</math> Therefore, there is only one discrete | ||
spectral point which we denote by <math>k_{1}=u_{0}/2</math> | spectral point which we denote by <math>k_{1}=u_{0}/2</math> | ||
Line 71: | Line 78: | ||
\right. | \right. | ||
</math></center> | </math></center> | ||
=== Case when <math>\lambda>0</math> === | |||
The continuous eigenfunctions correspond to <math>\lambda=k^{2}>0</math> are of the form | The continuous eigenfunctions correspond to <math>\lambda=k^{2}>0</math> are of the form | ||
<center><math> | <center><math> | ||
Line 81: | Line 91: | ||
\right. | \right. | ||
</math></center> | </math></center> | ||
where <math>\mathrm{e}^{-\mathrm{i}kx}</math> is the incident wave, <math>r\mathrm{e}^{\mathrm{i}kx}</math> is the reflected wave, and <math>t\mathrm{e}^{-\mathrm{i}kx}</math> is the transmitted wave. | |||
Again we have the conditions that <math>w</math> must be continuous at <math>0</math> and | Again we have the conditions that <math>w</math> must be continuous at <math>0</math> and | ||
<math>\partial_{x}w\left( 0^{+}\right) -\partial_{x}w\left( 0^{-}\right) | <math>\partial_{x}w\left( 0^{+}\right) -\partial_{x}w\left( 0^{-}\right) | ||
Line 102: | Line 114: | ||
\begin{matrix} | \begin{matrix} | ||
0 & x\notin\left[ -\ | 0 & x\notin\left[ -\zeta,\zeta\right] \\ | ||
b & x\in\left[ -\ | b & x\in\left[ -\zeta,\zeta\right] | ||
\end{matrix} | \end{matrix} | ||
\right. | \right. | ||
Line 116: | Line 128: | ||
w\left( x\right) =\left\{ | w\left( x\right) =\left\{ | ||
\begin{matrix} | \begin{matrix} | ||
a_{1}e^{kx}, & x<-\ | a_{1}e^{kx}, & x<-\zeta,\\ | ||
b_{1}\cos\kappa x+b_{2}\sin\kappa x, & -\ | b_{1}\cos\kappa x+b_{2}\sin\kappa x, & -\zeta< x <\zeta,\\ | ||
a_{2}e^{-kx}, & x>\ | a_{2}e^{-kx}, & x>\zeta, | ||
\end{matrix} | \end{matrix} | ||
\right. | \right. | ||
Line 124: | Line 136: | ||
where <math>\kappa=\sqrt{b-k^{2}}</math> which means that <math>0\leq k\leq\sqrt{b}</math> (there is | where <math>\kappa=\sqrt{b-k^{2}}</math> which means that <math>0\leq k\leq\sqrt{b}</math> (there is | ||
no solution for <math>k>\sqrt{b}).</math> We then match <math>w</math> and its derivative at | no solution for <math>k>\sqrt{b}).</math> We then match <math>w</math> and its derivative at | ||
<math>x=\pm\ | <math>x=\pm\zeta</math> to solve for <math>a</math> and <math>b</math>. This leads to two system of | ||
equations, one for the even (<math>a_{1}=a_{2}</math> and <math>b_{2}=0</math> ) and one for the odd | equations, one for the even (<math>a_{1}=a_{2}</math> and <math>b_{2}=0</math> ) and one for the odd | ||
solutions (<math>a_{1}=-a_{2}</math> and <math>b_{1}=0)</math>. The solution for the even solutions | solutions (<math>a_{1}=-a_{2}</math> and <math>b_{1}=0)</math>. The solution for the even solutions | ||
Line 131: | Line 143: | ||
w\left( x\right) =\left\{ | w\left( x\right) =\left\{ | ||
\begin{matrix} | \begin{matrix} | ||
a_{1}e^{kx}, & x<-\ | a_{1}e^{kx}, & x<-\zeta,\\ | ||
b_{1}\cos\kappa x, & -\ | b_{1}\cos\kappa x, & -\zeta< x <\zeta,\\ | ||
a_{1}e^{-kx}, & x>\ | a_{1}e^{-kx}, & x>\zeta, | ||
\end{matrix} | \end{matrix} | ||
\right. | \right. | ||
</math></center> | </math></center> | ||
If we impose the condition that the function and its derivative are continuous at | If we impose the condition that the function and its derivative are continuous at | ||
<math>x=\pm\ | <math>x=\pm\zeta</math> we obtain the following equation | ||
<center><math> | <center><math> | ||
\left( | \left( | ||
\begin{matrix} | \begin{matrix} | ||
e^{-k\ | e^{-k\zeta} & -\cos\kappa\zeta\\ | ||
ke^{-k\ | ke^{-k\zeta} & -\kappa\sin\kappa\zeta | ||
\end{matrix} | \end{matrix} | ||
\right) \left( | \right) \left( | ||
Line 165: | Line 177: | ||
\begin{matrix} | \begin{matrix} | ||
e^{-k\ | e^{-k\zeta} & -\cos\kappa\zeta\\ | ||
ke^{-k\ | ke^{-k\zeta} & -\kappa\sin\kappa\zeta | ||
\end{matrix} | \end{matrix} | ||
\right) =0 | \right) =0 | ||
Line 172: | Line 184: | ||
which gives us the equation | which gives us the equation | ||
<center><math> | <center><math> | ||
-\kappa e^{-k\ | -\kappa e^{-k\zeta}\sin\kappa\zeta+k\cos\kappa\zeta | ||
e^{-k\ | e^{-k\zeta}=0 | ||
</math></center> | </math></center> | ||
or | or | ||
<center><math> | <center><math> | ||
\tan\kappa\ | \tan\kappa\zeta=\frac{k}{\kappa} | ||
</math></center> | </math></center> | ||
We know that <math>0<\kappa<\sqrt{b}</math> and if we plot this we see that we obtain a | We know that <math>0<\kappa<\sqrt{b}</math> and if we plot this we see that we obtain a | ||
Line 186: | Line 198: | ||
w\left( x\right) =\left\{ | w\left( x\right) =\left\{ | ||
\begin{matrix} | \begin{matrix} | ||
a_{1}e^{kx}, & x <-\ | a_{1}e^{kx}, & x <-\zeta,\\ | ||
b_{2}\sin\kappa x, & -\ | b_{2}\sin\kappa x, & -\zeta< x <\zeta,\\ | ||
-a_{1}e^{-kx} & x > \ | -a_{1}e^{-kx} & x > \zeta, | ||
\end{matrix} | \end{matrix} | ||
\right. | \right. | ||
</math></center> | </math></center> | ||
and again imposing the condition that the solution and its derivative is continuous | and again imposing the condition that the solution and its derivative is continuous | ||
at <math>x=\pm\ | at <math>x=\pm\zeta</math> gives | ||
<center><math> | <center><math> | ||
\left( | \left( | ||
\begin{matrix} | \begin{matrix} | ||
e^{-k\ | e^{-k\zeta} & \sin\kappa\zeta\\ | ||
ke^{-k\ | ke^{-k\zeta} & -\kappa\cos\kappa\zeta | ||
\end{matrix} | \end{matrix} | ||
\right) \left( | \right) \left( | ||
Line 220: | Line 232: | ||
\begin{matrix} | \begin{matrix} | ||
e^{-k\ | e^{-k\zeta} & \sin\kappa\zeta\\ | ||
ke^{-k\ | ke^{-k\zeta} & -\kappa\cos\kappa\zeta | ||
\end{matrix} | \end{matrix} | ||
\right) =0 | \right) =0 | ||
Line 227: | Line 239: | ||
which gives us the equation | which gives us the equation | ||
<center><math> | <center><math> | ||
\kappa e^{-k\ | \kappa e^{-k\zeta}a\cos\kappa\zeta+k\sin\kappa\zeta e^{-k\zeta}=0 | ||
</math></center> | </math></center> | ||
or | or | ||
<center><math> | <center><math> | ||
\tan\ | \tan\zeta\kappa=-\frac{\kappa}{k} | ||
</math></center> | </math></center> | ||
Line 241: | Line 253: | ||
\begin{matrix} | \begin{matrix} | ||
\mathrm{e}^{-\mathrm{i}kx}+r\mathrm{e}^{\mathrm{i}kx}, & x <-\ | \mathrm{e}^{-\mathrm{i}kx}+r\mathrm{e}^{\mathrm{i}kx}, & x <-\zeta\\ | ||
b_{1}\cos\kappa x+b_{2}\sin\kappa x & -\ | b_{1}\cos\kappa x+b_{2}\sin\kappa x & -\zeta< x <\zeta\\ | ||
t\mathrm{e}^{-\mathrm{i}kx} & x>\ | t\mathrm{e}^{-\mathrm{i}kx} & x>\zeta | ||
\end{matrix} | \end{matrix} | ||
\right. | \right. | ||
</math></center> | </math></center> | ||
where <math>\kappa=\sqrt{b+k^{2}}.</math> Matching <math>w</math> and its | where <math>\kappa=\sqrt{b+k^{2}}.</math> Matching <math>w</math> and its derivatives at <math>x=\pm\zeta</math> we | ||
obtain | obtain | ||
<center><math> | <center><math> | ||
Line 253: | Line 265: | ||
\begin{matrix} | \begin{matrix} | ||
-\mathrm{e}^{-\mathrm{i}k\ | -\mathrm{e}^{-\mathrm{i}k\zeta} & \cos\kappa\zeta & -\sin\kappa\zeta & 0\\ | ||
ik\mathrm{e}^{-\mathrm{i}k\ | ik\mathrm{e}^{-\mathrm{i}k\zeta} & \kappa\sin\kappa\zeta & \kappa\cos\kappa | ||
\ | \zeta & 0\\ | ||
0 & \cos\kappa\ | 0 & \cos\kappa\zeta & \sin\kappa\zeta & -\mathrm{e}^{-\mathrm{i}k\zeta}\\ | ||
0 & -\kappa\sin\kappa\ | 0 & -\kappa\sin\kappa\zeta & \kappa\cos\kappa\zeta & | ||
ik\mathrm{e}^{-\mathrm{i}k\ | ik\mathrm{e}^{-\mathrm{i}k\zeta} | ||
\end{matrix} | \end{matrix} | ||
\right) \left( | \right) \left( |
Latest revision as of 09:27, 28 September 2025
Nonlinear PDE's Course | |
---|---|
Current Topic | Properties of the Linear Schrodinger Equation |
Next Topic | Connection betwen KdV and the Schrodinger Equation |
Previous Topic | Introduction to the Inverse Scattering Transform |
The linear Schrödinger equation
has two kinds of solutions for [math]\displaystyle{ u\rightarrow0 }[/math] as [math]\displaystyle{ x\rightarrow\pm\infty. }[/math] The first are waves and the second are bound solutions. It is well known that there are at most a finite number of bound solutions (provided [math]\displaystyle{ u\rightarrow0 }[/math] as [math]\displaystyle{ x\rightarrow\pm\infty }[/math] sufficiently rapidly) and a continum of solutions for the incident waves. This is easiest seen through the following examples
Example 1: [math]\displaystyle{ \delta }[/math] function potential
We consider here the case when [math]\displaystyle{ u\left( x,0\right) = u_0 \delta\left( x\right) . }[/math] Note that this function can be thought of as the limit as of the potential
In this case we need to solve
Case when [math]\displaystyle{ \lambda\lt 0 }[/math]
We consider the cases of [math]\displaystyle{ \lambda\lt 0 }[/math] and [math]\displaystyle{ \lambda\gt 0 }[/math] separately. For the first case we write [math]\displaystyle{ \lambda=-k^{2} }[/math] and we obtain (as [math]\displaystyle{ w\rightarrow0 }[/math] as [math]\displaystyle{ x\rightarrow\pm\infty }[/math])
We have two conditions at [math]\displaystyle{ x=0, }[/math] [math]\displaystyle{ w }[/math] must be continuous at [math]\displaystyle{ 0 }[/math] and [math]\displaystyle{ \partial_{x}w\left( 0^{+}\right) -\partial_{x}w\left( 0^{-}\right) +u_0 w\left( 0\right) =0. }[/math] This final condition is obtained by integrating `across' zero as follows
This gives the condition that [math]\displaystyle{ a=b }[/math] and [math]\displaystyle{ k=u_{0}/2. }[/math] We need to normalise the eigenfunctions so that
Therefore
[math]\displaystyle{ 2\left( a^2\dfrac{e^{-u_{0}x}}{-u_{0}}\right)\Bigg|_{0}^{\infty}=1 }[/math]
[math]\displaystyle{ \dfrac{2a^2}{u_{0}}=1 }[/math]which means that [math]\displaystyle{ a=\sqrt{u_{0}/2}. }[/math] Therefore, there is only one discrete spectral point which we denote by [math]\displaystyle{ k_{1}=u_{0}/2 }[/math]
Case when [math]\displaystyle{ \lambda\gt 0 }[/math]
The continuous eigenfunctions correspond to [math]\displaystyle{ \lambda=k^{2}\gt 0 }[/math] are of the form
where [math]\displaystyle{ \mathrm{e}^{-\mathrm{i}kx} }[/math] is the incident wave, [math]\displaystyle{ r\mathrm{e}^{\mathrm{i}kx} }[/math] is the reflected wave, and [math]\displaystyle{ t\mathrm{e}^{-\mathrm{i}kx} }[/math] is the transmitted wave.
Again we have the conditions that [math]\displaystyle{ w }[/math] must be continuous at [math]\displaystyle{ 0 }[/math] and [math]\displaystyle{ \partial_{x}w\left( 0^{+}\right) -\partial_{x}w\left( 0^{-}\right) +u_{0}w\left( 0\right) =0. }[/math] This gives us
which has solution
Example 2: Hat Function Potential
The properties of the eigenfunction is perhaps seem most easily through the following example
where [math]\displaystyle{ b\gt 0. }[/math]
Case when [math]\displaystyle{ \lambda\lt 0 }[/math]
If we solve this equation for the case when [math]\displaystyle{ \lambda\lt 0, }[/math] [math]\displaystyle{ \lambda=-k^{2} }[/math] we get
where [math]\displaystyle{ \kappa=\sqrt{b-k^{2}} }[/math] which means that [math]\displaystyle{ 0\leq k\leq\sqrt{b} }[/math] (there is no solution for [math]\displaystyle{ k\gt \sqrt{b}). }[/math] We then match [math]\displaystyle{ w }[/math] and its derivative at [math]\displaystyle{ x=\pm\zeta }[/math] to solve for [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math]. This leads to two system of equations, one for the even ([math]\displaystyle{ a_{1}=a_{2} }[/math] and [math]\displaystyle{ b_{2}=0 }[/math] ) and one for the odd solutions ([math]\displaystyle{ a_{1}=-a_{2} }[/math] and [math]\displaystyle{ b_{1}=0) }[/math]. The solution for the even solutions is
If we impose the condition that the function and its derivative are continuous at [math]\displaystyle{ x=\pm\zeta }[/math] we obtain the following equation
This has non trivial solutions when
which gives us the equation
or
We know that [math]\displaystyle{ 0\lt \kappa\lt \sqrt{b} }[/math] and if we plot this we see that we obtain a finite number of solutions.
The solution for the odd solutions is
and again imposing the condition that the solution and its derivative is continuous at [math]\displaystyle{ x=\pm\zeta }[/math] gives
This can non trivial solutions when
which gives us the equation
or
Case when [math]\displaystyle{ \lambda\gt 0 }[/math]
When [math]\displaystyle{ \lambda\gt 0 }[/math] we write [math]\displaystyle{ \lambda=k^{2} }[/math] and we obtain solution
where [math]\displaystyle{ \kappa=\sqrt{b+k^{2}}. }[/math] Matching [math]\displaystyle{ w }[/math] and its derivatives at [math]\displaystyle{ x=\pm\zeta }[/math] we obtain