Difference between revisions of "Energy Balance for Two Elastic Plates"
(11 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | = Introduction = | + | {{pages to be deleted}} |
+ | |||
+ | == Introduction == | ||
We derive here a condition which must be satisfied for energy balance for two semi-infinite elastic plates. The solution applies | We derive here a condition which must be satisfied for energy balance for two semi-infinite elastic plates. The solution applies | ||
Line 25: | Line 27: | ||
(for details of this notation see [[Eigenfunction Matching Method for Floating Elastic Plates]]). | (for details of this notation see [[Eigenfunction Matching Method for Floating Elastic Plates]]). | ||
− | = Equations = | + | == Equations == |
Based on the method used in [[Evans and Davies 1968]], a check can be made to ensure the solutions of the floating plate problem are in energy balance. | Based on the method used in [[Evans and Davies 1968]], a check can be made to ensure the solutions of the floating plate problem are in energy balance. | ||
Line 32: | Line 34: | ||
The domain of integration is shown in the figure on the right. | The domain of integration is shown in the figure on the right. | ||
− | + | {{energy_region_plates}} | |
− | { | ||
− | |||
Applying Green's theorem to <math>\phi</math> and its conjugate <math>\phi^*</math> gives | Applying Green's theorem to <math>\phi</math> and its conjugate <math>\phi^*</math> gives | ||
<center><math> | <center><math> | ||
− | { \ | + | { \iint_{\Omega}(\phi\nabla^2\phi^* - \phi^*\nabla^2\phi)\mathrm{d}x\mathrm{d}z |
− | = \int_\ | + | = \int_{\partial\Omega}(\phi\frac{\partial\phi^*}{\partial n} - \phi^*\frac{\partial\phi}{\partial n})\mathrm{d}l }, |
</math></center> | </math></center> | ||
where <math>n</math> denotes the outward plane normal to the boundary and <math>l</math> denotes the plane parallel to the boundary. | where <math>n</math> denotes the outward plane normal to the boundary and <math>l</math> denotes the plane parallel to the boundary. | ||
As <math>\phi</math> and <math>\phi^*</math> satisfy the Laplace's equation, the left hand side of the Green theorem equation vanishes so that it reduces to | As <math>\phi</math> and <math>\phi^*</math> satisfy the Laplace's equation, the left hand side of the Green theorem equation vanishes so that it reduces to | ||
<center><math> | <center><math> | ||
− | \Im\int_\ | + | \Im\int_{\partial\Omega}\phi\frac{\partial\phi^*}{\partial n} \mathrm{d}l = 0, |
</math></center> | </math></center> | ||
Expanding gives | Expanding gives | ||
Line 53: | Line 53: | ||
<center><math> | <center><math> | ||
\xi_1 = | \xi_1 = | ||
− | -{ \Im\int_{-h}^0(\phi\frac{\partial\phi^*}{\partial x})\big|_{x=-\infty} | + | -{ \Im\int_{-h}^0(\phi\frac{\partial\phi^*}{\partial x})\big|_{x=-\infty}\mathrm{d}z }, |
</math></center> | </math></center> | ||
<center><math> | <center><math> | ||
\xi_2 = | \xi_2 = | ||
− | { \Im\int_{-h}^0(\phi\frac{\partial\phi^*}{\partial x})\big|_{x=\infty} | + | { \Im\int_{-h}^0(\phi\frac{\partial\phi^*}{\partial x})\big|_{x=\infty}\mathrm{d}z }, |
</math></center> | </math></center> | ||
and | and | ||
<center><math> | <center><math> | ||
\xi_3 = | \xi_3 = | ||
− | { \Im\int_{-\infty}^{\infty}(\phi\frac{\partial\phi^*}{\partial z})\big|_{z=0} | + | { \Im\int_{-\infty}^{\infty}(\phi\frac{\partial\phi^*}{\partial z})\big|_{z=0}\mathrm{d}x } , |
</math></center> | </math></center> | ||
where <math>\Im</math> denotes the imaginary part. The bottom domain composant is obviously equal to zero because of the no-influx condition over the seabed (<math>\frac{\partial\phi^*}{\partial z}\big|_{z=-h}=0</math>). | where <math>\Im</math> denotes the imaginary part. The bottom domain composant is obviously equal to zero because of the no-influx condition over the seabed (<math>\frac{\partial\phi^*}{\partial z}\big|_{z=-h}=0</math>). | ||
− | = Expanding <math>\mathbf{\xi_1}</math> = | + | == Expanding <math>\mathbf{\xi_1}</math> == |
Near <math>x=-\infty</math>, we approximate <math>\phi</math> by | Near <math>x=-\infty</math>, we approximate <math>\phi</math> by | ||
Line 78: | Line 78: | ||
\xi_1 & = & {-\Im\int_{-h}^0 \left[\left(e^{-i\kappa^{I}_1(x)}+ R_1(0)e^{i\kappa^{I}_1(x)}\right)\right.} | \xi_1 & = & {-\Im\int_{-h}^0 \left[\left(e^{-i\kappa^{I}_1(x)}+ R_1(0)e^{i\kappa^{I}_1(x)}\right)\right.} | ||
{ \left(i\kappa^{I}_1e^{i\kappa^{I}_1(x)} - i\kappa^{I}_1R_1(0)^*e^{-i\kappa^{I}_1(x)}\right) } | { \left(i\kappa^{I}_1e^{i\kappa^{I}_1(x)} - i\kappa^{I}_1R_1(0)^*e^{-i\kappa^{I}_1(x)}\right) } | ||
− | { \left.\left(\frac{\cosh^2{(k^I_1(z+h))}}{\cosh^2{(k^I_1h)}}\right)\right] | + | { \left.\left(\frac{\cosh^2{(k^I_1(z+h))}}{\cosh^2{(k^I_1h)}}\right)\right]\mathrm{d}z, }\\ \\ |
& = & { - \Im\left[\frac{i\kappa^{I}_1\left(1 - |R_1(0)|^2\right)}{2\cosh^2{(k^I_1h)}} | & = & { - \Im\left[\frac{i\kappa^{I}_1\left(1 - |R_1(0)|^2\right)}{2\cosh^2{(k^I_1h)}} | ||
− | \int_{-h}^0 \left(\cosh{(2k^I_1(z+h))+1}\right) | + | \int_{-h}^0 \left(\cosh{(2k^I_1(z+h))+1}\right)\mathrm{d}z\right] ,}\\ \\ |
& = & { - \Im\left[\frac{i\kappa^{I}_1\left(1 - |R_1(0)|^2\right)}{2\cosh^2{(k^I_1h)}} | & = & { - \Im\left[\frac{i\kappa^{I}_1\left(1 - |R_1(0)|^2\right)}{2\cosh^2{(k^I_1h)}} | ||
\left[\frac{1}{2k^I_1}\sinh{(2k^I_1(z+h))} + z\right]_{-h}^0\right], }\\ \\ | \left[\frac{1}{2k^I_1}\sinh{(2k^I_1(z+h))} + z\right]_{-h}^0\right], }\\ \\ | ||
Line 89: | Line 89: | ||
where <math>R_1(0)^*</math> is the conjugate of <math>R_1(0)</math>. | where <math>R_1(0)^*</math> is the conjugate of <math>R_1(0)</math>. | ||
− | = Expanding <math>\mathbf{\xi_2}</math> = | + | == Expanding <math>\mathbf{\xi_2}</math> == |
Near <math>x=\infty</math>, we approximate <math>\phi</math> by | Near <math>x=\infty</math>, we approximate <math>\phi</math> by | ||
Line 105: | Line 105: | ||
\frac{\partial\phi}{\partial x} \approx -i\kappa^I_{\Lambda}T_\Lambda(0)e^{-i\kappa^I_{\Lambda}(x)}\frac{\cosh{(k^I_\Lambda(z+h))}}{\cosh{(k^I_\Lambda h)}}. | \frac{\partial\phi}{\partial x} \approx -i\kappa^I_{\Lambda}T_\Lambda(0)e^{-i\kappa^I_{\Lambda}(x)}\frac{\cosh{(k^I_\Lambda(z+h))}}{\cosh{(k^I_\Lambda h)}}. | ||
</math></center> | </math></center> | ||
− | We know that <math>\kappa_\Lambda(0)=\sqrt{k_{\Lambda}(0)^2-(ik_y)^2}</math>, where <math>k_y</math> is real and depends on the incident angle <math>\theta</math>. When <math>\theta</math> becomes greater than a certain angle <math>\theta_0</math> defined by <math>\sin \theta_0= | + | We know that <math>\kappa_\Lambda(0)=\sqrt{k_{\Lambda}(0)^2-(ik_y)^2}</math>, where <math>k_y</math> is real and depends on the incident angle <math>\theta</math>. When <math>\theta</math> becomes greater than a certain angle <math>\theta_0</math> defined by <math>\sin \theta_0=\frac{k_{\Lambda}(0)}{k_{1}(0)}</math>, <math>\kappa_\Lambda(0)</math> becomes real so the potential becomes real as well. Thus the imaginary part is equal to 0. In that case, we have <math>\xi_2=0</math>. |
Therefore, if <math>\theta \in [-\theta_0, \theta_0]</math>, | Therefore, if <math>\theta \in [-\theta_0, \theta_0]</math>, | ||
<center><math> | <center><math> | ||
Line 118: | Line 118: | ||
otherwise <math>\xi_2=0</math>. | otherwise <math>\xi_2=0</math>. | ||
− | = Expanding <math>\mathbf{\xi_3}</math> = | + | == Expanding <math>\mathbf{\xi_3}</math> == |
The ice-covered boundary condition for the [[Floating Elastic Plate]] gives | The ice-covered boundary condition for the [[Floating Elastic Plate]] gives | ||
Line 164: | Line 164: | ||
</math></center> | </math></center> | ||
− | Now breaking <math>\xi_3</math> down, we can simplify the left | + | Now breaking <math>\xi_3</math> down, we can simplify the left hand term for <math>x>0</math>, |
+ | if <math>\theta \in [-\theta_0, \theta_0]</math>, | ||
<center><math> | <center><math> | ||
Line 176: | Line 177: | ||
\end{matrix} | \end{matrix} | ||
</math></center> | </math></center> | ||
+ | else this term is equal to 0. | ||
and for <math>x<0</math> | and for <math>x<0</math> | ||
Line 193: | Line 195: | ||
</math></center> | </math></center> | ||
− | Likewise we expand the right | + | Likewise we expand the right hand term for <math>x>0</math>, if <math>\theta \in [-\theta_0, \theta_0]</math>, |
<center><math> | <center><math> | ||
Line 204: | Line 206: | ||
\end{matrix} | \end{matrix} | ||
</math></center> | </math></center> | ||
− | + | else this term is equal to 0 as well, | |
and finally for <math>x<0</math>, | and finally for <math>x<0</math>, | ||
Line 232: | Line 234: | ||
\end{matrix} | \end{matrix} | ||
</math></center> | </math></center> | ||
+ | if <math>\theta \in [-\theta_0, \theta_0]</math>, and if not, we obtain: | ||
+ | <center> | ||
+ | <math> | ||
+ | \xi_3 = -\frac{\beta_1}{\alpha}\left[2\kappa^I_{1}(k^I_1)^2((\kappa^I_{1})^2 + k_y^2)\tanh^2{(k^I_1h)}(1-|R_1(0)|^2)\right]. | ||
+ | </math> | ||
+ | </center> | ||
− | = Solving the Energy Balance Equation = | + | == Solving the Energy Balance Equation == |
− | Pulling it all together, we finally obtain | + | Pulling it all together for the case <math>\theta \in [-\theta_0, \theta_0]</math>, we finally obtain |
<center><math> | <center><math> | ||
\frac{\beta_\Lambda}{\alpha}\left[2\kappa^I_{\Lambda}(k^I_\Lambda)^2((\kappa^I_{\Lambda})^2 +k_y^2) | \frac{\beta_\Lambda}{\alpha}\left[2\kappa^I_{\Lambda}(k^I_\Lambda)^2((\kappa^I_{\Lambda})^2 +k_y^2) | ||
Line 268: | Line 276: | ||
\frac{1}{2}{\sinh{(2k^I_1h)}}+k^I_1h}\right) | \frac{1}{2}{\sinh{(2k^I_1h)}}+k^I_1h}\right) | ||
</math></center> | </math></center> | ||
+ | For the case of greater angles, there are no terms depending on <math>|T_{\Lambda}(0)|^2</math>, so we obtain <math>D=0</math> and <math>|R_{1}(0)|^2 = 1</math>, which is the case of the total reflexion. No energy is transmitted in the <math>x>0</math> region. | ||
[[Category:Floating Elastic Plate]] | [[Category:Floating Elastic Plate]] |
Latest revision as of 09:38, 20 October 2009
Introduction
We derive here a condition which must be satisfied for energy balance for two semi-infinite elastic plates. The solution applies to the problem of multiple elastic plates and from here we know we can write the potential as
(for details of this notation see Eigenfunction Matching Method for Floating Elastic Plates).
Equations
Based on the method used in Evans and Davies 1968, a check can be made to ensure the solutions of the floating plate problem are in energy balance. This is simply a condition that the incident energy is equal to the sum of the radiated energy. When the first and final plates have different properties, the energy balance equation is derived by applying Green's theorem to [math]\displaystyle{ \phi }[/math] and its conjugate. The domain of integration is shown in the figure on the right.
Applying Green's theorem to [math]\displaystyle{ \phi }[/math] and its conjugate [math]\displaystyle{ \phi^* }[/math] gives
where [math]\displaystyle{ n }[/math] denotes the outward plane normal to the boundary and [math]\displaystyle{ l }[/math] denotes the plane parallel to the boundary. As [math]\displaystyle{ \phi }[/math] and [math]\displaystyle{ \phi^* }[/math] satisfy the Laplace's equation, the left hand side of the Green theorem equation vanishes so that it reduces to
Expanding gives
where
and
where [math]\displaystyle{ \Im }[/math] denotes the imaginary part. The bottom domain composant is obviously equal to zero because of the no-influx condition over the seabed ([math]\displaystyle{ \frac{\partial\phi^*}{\partial z}\big|_{z=-h}=0 }[/math]).
Expanding [math]\displaystyle{ \mathbf{\xi_1} }[/math]
Near [math]\displaystyle{ x=-\infty }[/math], we approximate [math]\displaystyle{ \phi }[/math] by
Therefore,
where [math]\displaystyle{ R_1(0)^* }[/math] is the conjugate of [math]\displaystyle{ R_1(0) }[/math].
Expanding [math]\displaystyle{ \mathbf{\xi_2} }[/math]
Near [math]\displaystyle{ x=\infty }[/math], we approximate [math]\displaystyle{ \phi }[/math] by
and re-express as
where [math]\displaystyle{ k^I_\Lambda = \Im k_{\Lambda}(0) }[/math] and [math]\displaystyle{ \kappa^I_\Lambda=\Im \kappa_\Lambda(0) }[/math], so that
We know that [math]\displaystyle{ \kappa_\Lambda(0)=\sqrt{k_{\Lambda}(0)^2-(ik_y)^2} }[/math], where [math]\displaystyle{ k_y }[/math] is real and depends on the incident angle [math]\displaystyle{ \theta }[/math]. When [math]\displaystyle{ \theta }[/math] becomes greater than a certain angle [math]\displaystyle{ \theta_0 }[/math] defined by [math]\displaystyle{ \sin \theta_0=\frac{k_{\Lambda}(0)}{k_{1}(0)} }[/math], [math]\displaystyle{ \kappa_\Lambda(0) }[/math] becomes real so the potential becomes real as well. Thus the imaginary part is equal to 0. In that case, we have [math]\displaystyle{ \xi_2=0 }[/math]. Therefore, if [math]\displaystyle{ \theta \in [-\theta_0, \theta_0] }[/math],
otherwise [math]\displaystyle{ \xi_2=0 }[/math].
Expanding [math]\displaystyle{ \mathbf{\xi_3} }[/math]
The ice-covered boundary condition for the Floating Elastic Plate gives
Since [math]\displaystyle{ {\frac{\partial\phi}{\partial z}\cdot\frac{\partial\phi^*}{\partial z}} }[/math] is real,
Integration by parts gives
As [math]\displaystyle{ {2k_y^2\frac{\partial}{\partial x}\frac{\partial\phi}{\partial z}\cdot \frac{\partial}{\partial x}\frac{\partial\phi^*}{\partial z}} }[/math] is real and by integration by parts, the expression of [math]\displaystyle{ \xi_3 }[/math] becomes,
As [math]\displaystyle{ {\frac{\partial^2}{\partial x^2}\frac{\partial\phi}{\partial z}\cdot \frac{\partial^2}{\partial x^2}\frac{\partial\phi^*}{\partial z}} }[/math] is real, we obtain the new expression of [math]\displaystyle{ \xi_3 }[/math]
Now breaking [math]\displaystyle{ \xi_3 }[/math] down, we can simplify the left hand term for [math]\displaystyle{ x\gt 0 }[/math], if [math]\displaystyle{ \theta \in [-\theta_0, \theta_0] }[/math],
else this term is equal to 0.
and for [math]\displaystyle{ x\lt 0 }[/math]
Likewise we expand the right hand term for [math]\displaystyle{ x\gt 0 }[/math], if [math]\displaystyle{ \theta \in [-\theta_0, \theta_0] }[/math],
else this term is equal to 0 as well, and finally for [math]\displaystyle{ x\lt 0 }[/math],
We can now express [math]\displaystyle{ \xi_3 }[/math] as
if [math]\displaystyle{ \theta \in [-\theta_0, \theta_0] }[/math], and if not, we obtain:
[math]\displaystyle{ \xi_3 = -\frac{\beta_1}{\alpha}\left[2\kappa^I_{1}(k^I_1)^2((\kappa^I_{1})^2 + k_y^2)\tanh^2{(k^I_1h)}(1-|R_1(0)|^2)\right]. }[/math]
Solving the Energy Balance Equation
Pulling it all together for the case [math]\displaystyle{ \theta \in [-\theta_0, \theta_0] }[/math], we finally obtain
Re-arranging gives
which can be expressed as
where [math]\displaystyle{ D }[/math] is given by
For the case of greater angles, there are no terms depending on [math]\displaystyle{ |T_{\Lambda}(0)|^2 }[/math], so we obtain [math]\displaystyle{ D=0 }[/math] and [math]\displaystyle{ |R_{1}(0)|^2 = 1 }[/math], which is the case of the total reflexion. No energy is transmitted in the [math]\displaystyle{ x\gt 0 }[/math] region.