Difference between revisions of "Category:Linear Hydroelasticity"

From WikiWaves
Jump to navigationJump to search
Line 5: Line 5:
 
[[Category:Linear Water-Wave Theory]]
 
[[Category:Linear Water-Wave Theory]]
  
Finite Element Method (FEM) can be used to analyze any general 3D elastic structure using linear hydroelastic theory.
+
== Expansion in Modes ==
  
<center>
+
The basic idea is to use the same solution method as for a [[Linear Wave-Body Interaction|rigid body]])
local FE <math>\Rightarrow </math> global FE model
+
except to include elastic modes.
</center>
+
While there will be an infinite number of these modes in general, in practice only a few of the lowest
 +
modes will be important unless the body is very flexible.
 +
 
 +
== Finite Element Method ==
  
Dynamic equation of motion in matrix form can be expressed as:
+
The finite element method is ideally suited to analyse flexible bodies. In the standard FEM notation
 +
the dynamic equation of motion in matrix form can be expressed as:
 
<center>  
 
<center>  
 
<math>
 
<math>
Line 17: Line 21:
 
\begin{bmatrix}S\end{bmatrix}\begin{bmatrix}\dot D\end{bmatrix}+
 
\begin{bmatrix}S\end{bmatrix}\begin{bmatrix}\dot D\end{bmatrix}+
 
\begin{bmatrix}M\end{bmatrix}\begin{bmatrix}\ddot D\end{bmatrix}=
 
\begin{bmatrix}M\end{bmatrix}\begin{bmatrix}\ddot D\end{bmatrix}=
\begin{bmatrix}F(t)\end{bmatrix}</math>, where:</center>
+
\begin{bmatrix}F(t)\end{bmatrix}</math></center>
 
+
where
 
 
 
<center><math>\begin{bmatrix}K\end{bmatrix}</math> is structural stiffness matrix,</center>
 
<center><math>\begin{bmatrix}K\end{bmatrix}</math> is structural stiffness matrix,</center>
 
<center><math>\begin{bmatrix}S\end{bmatrix}</math> is structural damping matrix,</center>
 
<center><math>\begin{bmatrix}S\end{bmatrix}</math> is structural damping matrix,</center>
Line 29: Line 32:
 
Left-hand side of the global FEM matrix equation represents "dry" (in vacuuo) structure, while the right-hand side includes fluid forces (and coupling between the surrounding fluid and the structure).
 
Left-hand side of the global FEM matrix equation represents "dry" (in vacuuo) structure, while the right-hand side includes fluid forces (and coupling between the surrounding fluid and the structure).
  
 +
== Frequency Domain Problem ==
 +
 +
We consider the problem in the [[Frequency Domain Problem|Frequency Domain]] so that
 +
<math>\begin{bmatrix}D\end{bmatrix}=\begin{bmatrix}w\end{bmatrix}\,e^{-i\omega t}</math>.
  
 
The eigenvalue problem for the "dry" natural vibrations yields:
 
The eigenvalue problem for the "dry" natural vibrations yields:
 
 
<center><math>\begin{bmatrix}K\end{bmatrix}\begin{bmatrix}D\end{bmatrix}+\begin{bmatrix}M\end{bmatrix}\begin{bmatrix}\ddot D\end{bmatrix}=\begin{bmatrix}0\end{bmatrix}</math></center>
 
<center><math>\begin{bmatrix}K\end{bmatrix}\begin{bmatrix}D\end{bmatrix}+\begin{bmatrix}M\end{bmatrix}\begin{bmatrix}\ddot D\end{bmatrix}=\begin{bmatrix}0\end{bmatrix}</math></center>
  

Revision as of 09:09, 28 April 2010


Problems in Linear Water-Wave theory in which there is an elastic body.

Expansion in Modes

The basic idea is to use the same solution method as for a rigid body) except to include elastic modes. While there will be an infinite number of these modes in general, in practice only a few of the lowest modes will be important unless the body is very flexible.

Finite Element Method

The finite element method is ideally suited to analyse flexible bodies. In the standard FEM notation the dynamic equation of motion in matrix form can be expressed as:

[math]\displaystyle{ \begin{bmatrix}K\end{bmatrix}\begin{bmatrix}D\end{bmatrix}+ \begin{bmatrix}S\end{bmatrix}\begin{bmatrix}\dot D\end{bmatrix}+ \begin{bmatrix}M\end{bmatrix}\begin{bmatrix}\ddot D\end{bmatrix}= \begin{bmatrix}F(t)\end{bmatrix} }[/math]

where

[math]\displaystyle{ \begin{bmatrix}K\end{bmatrix} }[/math] is structural stiffness matrix,
[math]\displaystyle{ \begin{bmatrix}S\end{bmatrix} }[/math] is structural damping matrix,
[math]\displaystyle{ \begin{bmatrix}M\end{bmatrix} }[/math] is structural mass matrix,
[math]\displaystyle{ \begin{bmatrix}D\end{bmatrix} }[/math] is generalized nodal displacements vector,
[math]\displaystyle{ \begin{bmatrix}F\end{bmatrix} }[/math] is generalized force vector (fluid forces, gravity forces,...).


Left-hand side of the global FEM matrix equation represents "dry" (in vacuuo) structure, while the right-hand side includes fluid forces (and coupling between the surrounding fluid and the structure).

Frequency Domain Problem

We consider the problem in the Frequency Domain so that [math]\displaystyle{ \begin{bmatrix}D\end{bmatrix}=\begin{bmatrix}w\end{bmatrix}\,e^{-i\omega t} }[/math].

The eigenvalue problem for the "dry" natural vibrations yields:

[math]\displaystyle{ \begin{bmatrix}K\end{bmatrix}\begin{bmatrix}D\end{bmatrix}+\begin{bmatrix}M\end{bmatrix}\begin{bmatrix}\ddot D\end{bmatrix}=\begin{bmatrix}0\end{bmatrix} }[/math]


If one assumes trial solution as [math]\displaystyle{ \begin{bmatrix}D\end{bmatrix}=\begin{bmatrix}w\end{bmatrix}\,e^{i\omega t} }[/math] then the eigenvalue problem reduces to [math]\displaystyle{ \left( \begin{bmatrix}K\end{bmatrix}-\omega^2 \begin{bmatrix}M\end{bmatrix} \right )\begin{bmatrix}w\end{bmatrix}=\begin{bmatrix}0\end{bmatrix} }[/math]. As a solution of the eigenvalue problem for each natural mode one obtains [math]\displaystyle{ \omega_n }[/math], the n-th dry natural frequency and [math]\displaystyle{ \begin{bmatrix}w_n\end{bmatrix} }[/math], the corresponding dry natural mode.


Generalized nodal displacements vector can be expressed using calculated "dry" structure natural modes:


[math]\displaystyle{ \begin{bmatrix}D\end{bmatrix} }[/math]=[math]\displaystyle{ \begin{bmatrix}W\end{bmatrix}\cdot\begin{bmatrix}\xi\end{bmatrix} }[/math]


[math]\displaystyle{ \begin{bmatrix}W\end{bmatrix} }[/math]=[math]\displaystyle{ \begin{bmatrix}\mathbf{w_1}\,\mathbf{w_2}\,\ldots \end{bmatrix} }[/math] is matrix of dry natural modes, with modes being sorted column-wise,
[math]\displaystyle{ \begin{bmatrix}\xi\end{bmatrix} }[/math]is natural modes coefficients vector (modal amplitudes).


[math]\displaystyle{ \begin{bmatrix}W\end{bmatrix}^T \begin{bmatrix}K\end{bmatrix} \begin{bmatrix}W\end{bmatrix} \begin{bmatrix}\xi\end{bmatrix}+\begin{bmatrix}W\end{bmatrix}^T \begin{bmatrix}S\end{bmatrix} \begin{bmatrix}W\end{bmatrix} \begin{bmatrix}\dot\xi\end{bmatrix} +\begin{bmatrix}W\end{bmatrix}^T \begin{bmatrix}M\end{bmatrix} \begin{bmatrix}W\end{bmatrix} \begin{bmatrix}\ddot\xi\end{bmatrix} }[/math]=[math]\displaystyle{ \begin{bmatrix}W\end{bmatrix}^T\begin{bmatrix}F(t)\end{bmatrix} }[/math]


[math]\displaystyle{ \begin{bmatrix}k\end{bmatrix} \begin{bmatrix}\xi\end{bmatrix}+\begin{bmatrix}s\end{bmatrix} \begin{bmatrix}\dot\xi\end{bmatrix}+\begin{bmatrix}m\end{bmatrix} \begin{bmatrix}\ddot\xi\end{bmatrix} }[/math]=[math]\displaystyle{ \begin{bmatrix}f(t)\end{bmatrix} }[/math]


[math]\displaystyle{ \begin{bmatrix}k\end{bmatrix}=\begin{bmatrix}W^T\end{bmatrix}\begin{bmatrix}K\end{bmatrix}\begin{bmatrix}W\end{bmatrix} }[/math]is the modal stiffness matrix, [math]\displaystyle{ \begin{bmatrix}m\end{bmatrix}=\begin{bmatrix}W^T\end{bmatrix}\begin{bmatrix}M\end{bmatrix}\begin{bmatrix}W\end{bmatrix} }[/math]is the modal mass matrix.


Hydroelastic analysis of the general 3D structure is thus preformed using the modal superposition method.


Let us assume time-harmonic motion. Then the following is valid:

[math]\displaystyle{ \begin{bmatrix}\xi(t)\end{bmatrix}=\begin{bmatrix}\tilde{\xi}(\omega)\end{bmatrix}\cdot e^{i \omega t}, \; \begin{bmatrix}f(t)\end{bmatrix}=\begin{bmatrix}\tilde{f}(\omega)\end{bmatrix}\cdot e^{i \omega t} }[/math]


[math]\displaystyle{ \left ( \begin{bmatrix}k\end{bmatrix}+i\omega\begin{bmatrix}s\end{bmatrix}-\omega^2\begin{bmatrix}m\end{bmatrix} \right ) \begin{bmatrix}\tilde{\xi}\end{bmatrix}=\begin{bmatrix}\tilde{f}\end{bmatrix} }[/math]


Modal hydrodynamic forces are calculated by pressure work integration over the wetted surface:


[math]\displaystyle{ \tilde{f}^{hd}_i(t)=-i\omega\rho\iint_{S}\tilde{\phi}\,\mathbf{h_i}\mathbf{n}\,\mbox{d}S }[/math]


Total velocity potential can be decomposed as:


[math]\displaystyle{ \tilde{\phi}=\tilde{\phi}^I+\tilde{\phi}^D-i\omega\sum_{j=1}^N\tilde{\xi}_j\,\tilde{\phi}_j^R }[/math]


to be continued............

Subcategories

This category has only the following subcategory.