Difference between revisions of "Template:Removing the depth dependence"

From WikiWaves
Jump to navigationJump to search
m
Line 11: Line 11:
 
<center>
 
<center>
 
<math>
 
<math>
\phi(x,y,z) = \frac{\cos \big( k_0 (z+h) \big)}{\cos(k_0 h)} \Phi(x,y)
+
\phi(x,y,z) = \frac{\cosh \big( k (z+h) \big)}{\cosh(k h)} \Phi(x,y)
 
</math>
 
</math>
 
</center>
 
</center>
 
Since <math>\phi</math> satisfies [[Laplace's Equation]], then <math>\Phi</math> satisfies [[Helmholtz's Equation]]
 
Since <math>\phi</math> satisfies [[Laplace's Equation]], then <math>\Phi</math> satisfies [[Helmholtz's Equation]]
 
<center>
 
<center>
<math>\nabla^2 \Phi + k_0^2 \Phi = 0 </math>
+
<math>\nabla^2 \Phi + k^2 \Phi = 0 </math>
 
</center>
 
</center>
in the region not occupied by the scatterers. Not that this is not the standard way to write [[Helmholtz's Equation]]
+
in the region not occupied by the scatterers.
because <math>k_0</math> is the pure imaginary, and it is more normal to write
 
<center>
 
<math>\nabla^2 \Phi - k^2 \Phi = 0 </math>
 
</center>
 
where <math>k=-ik_0.</math>
 

Revision as of 22:58, 29 April 2010

If we have a problem in which all the scatterers are of constant cross sections so that

[math]\displaystyle{ \partial\Omega = \partial\hat{\Omega} \times z\in[-h,0] }[/math]

where [math]\displaystyle{ \partial\hat{\Omega} }[/math] is a function only of [math]\displaystyle{ x,y }[/math] i.e. the boundary of the scattering bodies is uniform with respect to depth. We can remove the depth dependence separation of variables and obtain that the dependence on depth is given by

[math]\displaystyle{ \phi(x,y,z) = \frac{\cosh \big( k (z+h) \big)}{\cosh(k h)} \Phi(x,y) }[/math]

Since [math]\displaystyle{ \phi }[/math] satisfies Laplace's Equation, then [math]\displaystyle{ \Phi }[/math] satisfies Helmholtz's Equation

[math]\displaystyle{ \nabla^2 \Phi + k^2 \Phi = 0 }[/math]

in the region not occupied by the scatterers.