Difference between revisions of "Seakeeping In Random Waves"
From WikiWaves
Jump to navigationJump to searchm |
|||
(4 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | + | {{Ocean Wave Interaction with Ships and Offshore Structures | |
+ | | chapter title = Seakeeping In Random Waves | ||
+ | | next chapter = [[Solution of Wave-Body Flows, Green's Theorem]] | ||
+ | | previous chapter = [[Derivative Seakeeping Quantities]] | ||
+ | }} | ||
− | + | {{incomplete pages}} | |
+ | |||
+ | Assume known the ambient wave spectral density <math>S_{\zeta}(\omega_0)\,</math> assumed unidirectional for simplicity | ||
<center><math> \frac{1}{2}A_i^2 = S(\omega_i)\Delta\omega \, </math></center> | <center><math> \frac{1}{2}A_i^2 = S(\omega_i)\Delta\omega \, </math></center> | ||
− | * <math> \int_0^\infty S_\zeta(\omega) d\omega = \sigma_\zeta^2 \equiv \,</math> Variance of the wave elevation of ambient random seastate, assumed Gaussian with zero mean | + | * <math> \int_0^\infty S_\zeta(\omega) \mathrm{d}\omega = \sigma_\zeta^2 \equiv \,</math> Variance of the wave elevation of ambient random seastate, assumed Gaussian with zero mean |
* Assuming that the <math>RAO(\omega)\,</math> of a seakeeping quantity <math> X(t) \,</math> has been determined from a frequency domain analysis; | * Assuming that the <math>RAO(\omega)\,</math> of a seakeeping quantity <math> X(t) \,</math> has been determined from a frequency domain analysis; | ||
Line 11: | Line 17: | ||
<u>Spectral analysis with forward-speed</u> | <u>Spectral analysis with forward-speed</u> | ||
− | <center><math> \omega = \left| \omega_0 - U \frac{\omega_0^2}{g} \cos \ | + | <center><math> \omega = \left| \omega_0 - U \frac{\omega_0^2}{g} \cos \beta \right| </math></center> |
* Ambient wave spectral density <math> S_\zeta(\omega_0)\,</math> is defined relative to the absolute wave frequency <math> \omega_0\,</math>. | * Ambient wave spectral density <math> S_\zeta(\omega_0)\,</math> is defined relative to the absolute wave frequency <math> \omega_0\,</math>. | ||
Line 17: | Line 23: | ||
* The <math> RAO_X(\omega) \,</math> is usually defined relative to the encounter frequency <math> \omega\,</math>. | * The <math> RAO_X(\omega) \,</math> is usually defined relative to the encounter frequency <math> \omega\,</math>. | ||
− | * The relation of <math> \omega \ | + | * The relation of <math> \omega \leftrightarrow \omega_0 \, </math> is not single valued. The question thus arises of what is the <math>\sigma_X^2\,</math>? |
<u>Answer</u> | <u>Answer</u> | ||
Line 33: | Line 39: | ||
<center><math> \left|RAO_3\right|(\omega) = \left|RAO_3\right| \left( \omega_0 - U \frac{\omega_0^2}{g} \cos\beta \right) \equiv \left|RAO_3 \right| (\omega_0) \,</math></center> | <center><math> \left|RAO_3\right|(\omega) = \left|RAO_3\right| \left( \omega_0 - U \frac{\omega_0^2}{g} \cos\beta \right) \equiv \left|RAO_3 \right| (\omega_0) \,</math></center> | ||
− | New function of <math>\omega_0\,</math> by virtue of the <math> \omega \leftrightarrow\,</math> relation. | + | New function of <math>\omega_0\,</math> by virtue of the <math> \omega \leftrightarrow\, \omega_0 </math> relation. |
The standard deviation of heave follows by simple integration over <math> \omega_0\,</math>: | The standard deviation of heave follows by simple integration over <math> \omega_0\,</math>: | ||
− | <center><math> \sigma_3^2 = \int_0^\infty d\omega_0 S_\zeta \left(\omega_0\right) \left|RAO_3^*\left(\omega_0\right)\right|^2 </math></center> | + | <center><math> \sigma_3^2 = \int_0^\infty \mathrm{d}\omega_0 S_\zeta \left(\omega_0\right) \left|RAO_3^*\left(\omega_0\right)\right|^2 </math></center> |
* The opposite choice of parameterizing the above integral w.r.t. <math>\omega\,</math> ends up with a lot of unnecessary algebra. | * The opposite choice of parameterizing the above integral w.r.t. <math>\omega\,</math> ends up with a lot of unnecessary algebra. |
Latest revision as of 15:26, 6 August 2010
Wave and Wave Body Interactions | |
---|---|
Current Chapter | Seakeeping In Random Waves |
Next Chapter | Solution of Wave-Body Flows, Green's Theorem |
Previous Chapter | Derivative Seakeeping Quantities |
Assume known the ambient wave spectral density [math]\displaystyle{ S_{\zeta}(\omega_0)\, }[/math] assumed unidirectional for simplicity
- [math]\displaystyle{ \int_0^\infty S_\zeta(\omega) \mathrm{d}\omega = \sigma_\zeta^2 \equiv \, }[/math] Variance of the wave elevation of ambient random seastate, assumed Gaussian with zero mean
- Assuming that the [math]\displaystyle{ RAO(\omega)\, }[/math] of a seakeeping quantity [math]\displaystyle{ X(t) \, }[/math] has been determined from a frequency domain analysis;
Spectral analysis with forward-speed
- Ambient wave spectral density [math]\displaystyle{ S_\zeta(\omega_0)\, }[/math] is defined relative to the absolute wave frequency [math]\displaystyle{ \omega_0\, }[/math].
- The [math]\displaystyle{ RAO_X(\omega) \, }[/math] is usually defined relative to the encounter frequency [math]\displaystyle{ \omega\, }[/math].
- The relation of [math]\displaystyle{ \omega \leftrightarrow \omega_0 \, }[/math] is not single valued. The question thus arises of what is the [math]\displaystyle{ \sigma_X^2\, }[/math]?
Answer
- Given [math]\displaystyle{ \omega_0 \, }[/math], a single value of [math]\displaystyle{ \omega\, }[/math] always follows.
- The opposite is not always true. Given [math]\displaystyle{ \omega\, }[/math] there may exist multiple [math]\displaystyle{ \omega_0\, }[/math]'s satisfying the encounter frequency relation.
- Therefore it is much simpler to parameterize with respect to [math]\displaystyle{ \omega_0\, }[/math], even when the [math]\displaystyle{ RAO(\omega)\, }[/math] is evaluated as a function of [math]\displaystyle{ \omega\, }[/math].
Proceed as follows:
Simply redefine the [math]\displaystyle{ RAO(\omega)\, }[/math] as follows:
New function of [math]\displaystyle{ \omega_0\, }[/math] by virtue of the [math]\displaystyle{ \omega \leftrightarrow\, \omega_0 }[/math] relation.
The standard deviation of heave follows by simple integration over [math]\displaystyle{ \omega_0\, }[/math]:
- The opposite choice of parameterizing the above integral w.r.t. [math]\displaystyle{ \omega\, }[/math] ends up with a lot of unnecessary algebra.
Ocean Wave Interaction with Ships and Offshore Energy Systems