Difference between revisions of "KdV Cnoidal Wave Solutions"
(The KdV equation has two qualitatively different types of permanent form travelling wave solution. These are referred to as cnoidal waves and solitary waves.) |
|||
(33 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | {{complete pages}} | |
+ | ==Introduction== | ||
+ | We will find a solution of the KdV equation for Shallow water waves, | ||
+ | |||
+ | <center><math> 2H_{0,\tau}+3H_0H_{0,z}+\frac{1}{3}H_{0,zzz}=0</math></center> | ||
+ | |||
+ | |||
+ | The KdV equation has two qualitatively different types of permanent form travelling wave solution. | ||
+ | |||
+ | These are referred to as cnoidal waves and solitary waves. | ||
==KdV equation in <math>(z,\tau)</math> space == | ==KdV equation in <math>(z,\tau)</math> space == | ||
Line 16: | Line 25: | ||
− | We integrate this equation | + | We rearrange and integrate this equation with respect to <math>\xi</math> to give |
+ | <center><math>\frac{1}{3} \int H_{\xi\xi\xi} d\xi = \int 2V_0 H_{\xi} d\xi - 3\int H H_\xi d\xi</math></center> | ||
+ | |||
+ | <center><math> \Longrightarrow | ||
+ | \frac{1}{3}H_{\xi\xi} = 2V_oH - \frac{3}{2}H^2 +D_1</math></center> | ||
+ | |||
+ | then multiply <math>H_\xi </math> to all terms and integrate again | ||
− | <center><math> \frac{1}{6}H_\xi^2=V_oH^2-\frac{1}{2}H^3+D_1H+D_2=f(H,V_0,D_1,D_2) </math></center> where D_1 and D_2 are constants of integration. | + | |
+ | |||
+ | <center><math>\Longrightarrow | ||
+ | \frac{1}{3}H_{\xi\xi} H_\xi = 2V_0HH_\xi - \frac{3H^2}{2}H_\xi + D_1H_\xi</math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math>\Longrightarrow | ||
+ | \frac{1}{3} \int H_{\xi\xi}H_\xi d\xi = 2V_o \int H H_\xi d\xi - \frac{3}{2} \int H^2H_\xi d\xi + \int D_1 H_\xi d\xi</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\Longrightarrow | ||
+ | \frac{1}{3} \cdot \frac{1}{2}H_\xi^2 = 2V_0 \frac{H^2}{2}-\frac{H^3}{2} +D_1H + D_2 </math></center> | ||
+ | |||
+ | |||
+ | |||
+ | <center><math> \Longrightarrow | ||
+ | \frac{1}{6}H_\xi^2=V_oH^2-\frac{1}{2}H^3+D_1H+D_2=f(H,V_0,D_1,D_2) </math></center> where <math>D_1</math> and <math>D_2</math> are constants of integration. | ||
==Standardization of KdV equation== | ==Standardization of KdV equation== | ||
− | |||
We define <math>f(H)= V_oH^2-\frac{1}{2}H^3+D_1H+D2</math>, | We define <math>f(H)= V_oH^2-\frac{1}{2}H^3+D_1H+D2</math>, | ||
Line 34: | Line 65: | ||
− | From the equation <math>f(H)=\frac{1}{6}H_\xi^2</math>, we require <math>f(H)>0 | + | From the equation <math>f(H)=\frac{1}{6}H_\xi^2</math>, we require <math>f(H)>0</math> |
We are only interested in solution for <math>H_2 < H < H_3</math> and we need <math>H_2 < H_3</math>. | We are only interested in solution for <math>H_2 < H < H_3</math> and we need <math>H_2 < H_3</math>. | ||
Line 45: | Line 76: | ||
where <math>X_i=\frac{H_i}{H}</math> | where <math>X_i=\frac{H_i}{H}</math> | ||
− | crest to be at <math>\xi=0 and X(0)=0</math> | + | crest to be at <math>\xi=0</math> and <math>X(0)=0</math> |
and a further variable Y via | and a further variable Y via | ||
− | <center><math> X=1+(X_2-1)sin^2(Y) </math></center> | + | <center><math> X = 1 +(X_2-1) \sin^2 (Y) </math></center> |
− | <center><math>Y_\xi^2=\frac{3}{4}H_3(1-X_1)\left\{ 1-\frac{(1-X_2)}{(1-X_1)}sin(Y)^2 \right\} | + | <center><math>Y_\xi^2=\frac{3}{4}H_3(1-X_1)\left\{ 1-\frac{(1-X_2)}{(1-X_1)}\sin(Y)^2 \right\} |
...(1)</math></center> | ...(1)</math></center> | ||
Line 58: | Line 89: | ||
so <math>Y(0)=0.</math> | so <math>Y(0)=0.</math> | ||
− | and <center><math>\frac{dY}{d\xi}=\sqrt{l(1-k^ | + | and <center><math>\frac{dY}{d\xi}=\sqrt{l(1-k^2\sin^2(Y))},</math></center> |
which is separable. | which is separable. | ||
Line 70: | Line 101: | ||
...(2) </math></center> | ...(2) </math></center> | ||
− | Clearly, <math>0 \leq k^2 \leq 1</math> and <math>l>0.</math> | + | Clearly, <math>0 \leq k^2 \leq 1</math> |
+ | and <math>l>0.</math> | ||
+ | |||
Line 77: | Line 110: | ||
A simple quadrature of equation (1) subject to the condition (2) the gives us | A simple quadrature of equation (1) subject to the condition (2) the gives us | ||
− | <center><math>\int_{0}^\bar{Y} \frac{dS}{\sqrt{l(1-k^ | + | <center><math>\int_{0}^\bar{Y} \frac{dS}{\sqrt{l(1-k^2\sin^2(Y))}} = \int_{0}^\bar{Y} dS</math></center> |
− | Jacobi elliptic function <math> y= sn(x,k)</math> can be written in the form | + | Jacobi elliptic function <math>y= sn(x,k)</math> can be written in the form |
− | <center><math> x= \int_{0}^y \frac{dt}{\sqrt{1-t^2}\sqrt{1-k^2t^2}} | + | <center><math> x= \int_{0}^y \frac{dt}{\sqrt{1-t^2}\sqrt{1-k^2t^2}}</math></center> |
+ | for <math>0 < k^2 < 1 </math>, | ||
or equivalently | or equivalently | ||
− | <center><math> x=\int_{0}^{sin^{-1}y} \frac{dS}{\sqrt{1-k^ | + | <center><math> x=\int_{0}^{\sin^{-1}y} \frac{dS}{\sqrt{1-k^2\sin^2(s)}} </math></center> |
− | Now we can write Y with fixed values of x,k as | + | Now we can write Y with fixed values of <math>x</math>,<math>k</math> as |
− | <center><math> \bar{Y}=sin^{-1}(sn(\sqrt{l}\int_0^{\bar{Y}} d\xi,k)),</math></center> | + | <center><math> \bar{Y}=\sin^{-1}(\mathrm {sn} (\sqrt{l}\int_0^{\bar{Y}} d\xi,k)),</math></center> |
− | <center><math> sin(Y)=sn(\sqrt{l}\xi;k),</math></center> | + | <center><math> \sin(Y)=\mathrm {sn}(\sqrt{l}\xi;k),</math></center> |
and hence | and hence | ||
− | <center><math>X=1+(X_2-1)sn^2(\sqrt{l}\xi;k)</math></center> | + | <center><math>X=1+(X_2-1)\mathrm {sn}^2(\sqrt{l}\xi;k)</math></center> |
− | <math>cn(x;k)</math> is another Jacobi elliptic function with <math>cn^2+sn^2=1</math>, and waves are called "cnoidal waves". | + | <math>\mathrm {cn}(x;k)</math> is another Jacobi elliptic function with <math>\mathrm {cn}^2+\mathrm {sn}^2=1</math>, and waves are called "cnoidal waves". |
Using the result <math>cn^2+sn^2=1</math>, our final result can be expressed in the form | Using the result <math>cn^2+sn^2=1</math>, our final result can be expressed in the form | ||
− | <center><math>H=H_2+(H_3-H_2)cn^2\left\{ \left[ \frac{3}{4}(H_3-H_1) \right]^{\frac{1}{2}}\xi;k \right\} </math></center> | + | <center><math>H=H_2+(H_3-H_2)\mathrm {cn}^2\left\{ \left[ \frac{3}{4}(H_3-H_1) \right]^{\frac{1}{2}}\xi;k \right\} </math></center> |
+ | |||
+ | [[Category:Nonlinear Water-Wave Theory]] |
Latest revision as of 10:20, 6 September 2010
Introduction
We will find a solution of the KdV equation for Shallow water waves,
The KdV equation has two qualitatively different types of permanent form travelling wave solution.
These are referred to as cnoidal waves and solitary waves.
KdV equation in [math]\displaystyle{ (z,\tau) }[/math] space
Assume we have wave travelling with speed [math]\displaystyle{ V_0 }[/math] without change of form,
and substitute into KdV equation then we obtain
where [math]\displaystyle{ \xi=z-V_0\tau }[/math] is the travelling wave coordinate.
We rearrange and integrate this equation with respect to [math]\displaystyle{ \xi }[/math] to give
then multiply [math]\displaystyle{ H_\xi }[/math] to all terms and integrate again
where [math]\displaystyle{ D_1 }[/math] and [math]\displaystyle{ D_2 }[/math] are constants of integration.
Standardization of KdV equation
We define [math]\displaystyle{ f(H)= V_oH^2-\frac{1}{2}H^3+D_1H+D2 }[/math], so [math]\displaystyle{ f(H)=\frac{1}{6}H_\xi^2 }[/math]
It turns out that we require 3 real roots to obtain periodic solutions. Let roots be [math]\displaystyle{ H_1 \leq H_2 \leq H_3 }[/math].
We can imagine the graph of cubic function which has 3 real roots and we can now write a function
From the equation [math]\displaystyle{ f(H)=\frac{1}{6}H_\xi^2 }[/math], we require [math]\displaystyle{ f(H)\gt 0 }[/math]
We are only interested in solution for [math]\displaystyle{ H_2 \lt H \lt H_3 }[/math] and we need [math]\displaystyle{ H_2 \lt H_3 }[/math].
and now solve equation in terms of the roots [math]\displaystyle{ H_i, }[/math]
We define [math]\displaystyle{ X=\frac{H}{H_3} }[/math], and obtain
where [math]\displaystyle{ X_i=\frac{H_i}{H} }[/math]
crest to be at [math]\displaystyle{ \xi=0 }[/math] and [math]\displaystyle{ X(0)=0 }[/math]
and a further variable Y via
so [math]\displaystyle{ Y(0)=0. }[/math]
and
which is separable.
In order to get this into a completely standard form we define
Clearly, [math]\displaystyle{ 0 \leq k^2 \leq 1 }[/math] and [math]\displaystyle{ l\gt 0. }[/math]
Solution of the KdV equation
A simple quadrature of equation (1) subject to the condition (2) the gives us
Jacobi elliptic function [math]\displaystyle{ y= sn(x,k) }[/math] can be written in the form
for [math]\displaystyle{ 0 \lt k^2 \lt 1 }[/math],
or equivalently
Now we can write Y with fixed values of [math]\displaystyle{ x }[/math],[math]\displaystyle{ k }[/math] as
and hence
[math]\displaystyle{ \mathrm {cn}(x;k) }[/math] is another Jacobi elliptic function with [math]\displaystyle{ \mathrm {cn}^2+\mathrm {sn}^2=1 }[/math], and waves are called "cnoidal waves".
Using the result [math]\displaystyle{ cn^2+sn^2=1 }[/math], our final result can be expressed in the form