Difference between revisions of "Connection betwen KdV and the Schrodinger Equation"
Line 117: | Line 117: | ||
<center><math> | <center><math> | ||
-v_{n}\left( x,t\right) +c_{n}^2\left( t\right) e^{-k_{n}x}-\sum_{m=1} | -v_{n}\left( x,t\right) +c_{n}^2\left( t\right) e^{-k_{n}x}-\sum_{m=1} | ||
− | ^{N}\frac{c_{n}\left( t\right) | + | ^{N}\frac{c_{n}^2\left( t\right) }{k_{n}+k_{m}} |
v_{m}\left( x,t\right) e^{-\left( k_{m}+k_{n}\right) x}=0 | v_{m}\left( x,t\right) e^{-\left( k_{m}+k_{n}\right) x}=0 | ||
</math></center> | </math></center> | ||
Line 126: | Line 126: | ||
\left( \mathbf{I}+\mathbf{C}\right) \vec{v}=\vec{f} | \left( \mathbf{I}+\mathbf{C}\right) \vec{v}=\vec{f} | ||
</math></center> | </math></center> | ||
− | where <math>f_{m}=c_{m}\left( t\right) e^{-k_{m}x}</math> and | + | where <math>f_{m}=c_{m}^2\left( t\right) e^{-k_{m}x}</math> and |
<center><math> | <center><math> | ||
− | c_{mn}=\sum_{m=1}^{N}\frac{c_{n}\left( t\right) | + | c_{mn}=\sum_{m=1}^{N}\frac{c_{n}^2\left( t\right)} |
− | + | {k_{n}+k_{m}}e^{-\left( k_{m}+k_{n}\right) x} | |
</math></center> | </math></center> | ||
+ | This gives us | ||
<center><math> | <center><math> | ||
K\left( x,y,t\right) =-\sum_{m=1}^{N}c_{m}\left( t\right) \left( | K\left( x,y,t\right) =-\sum_{m=1}^{N}c_{m}\left( t\right) \left( |
Revision as of 02:09, 24 September 2010
Nonlinear PDE's Course | |
---|---|
Current Topic | Connection betwen KdV and the Schrodinger Equation |
Next Topic | Example Calculations for the KdV and IST |
Previous Topic | Properties of the Linear Schrodinger Equation |
If we substitute the relationship
into the KdV after some manipulation we obtain
where [math]\displaystyle{ Q=\partial_{t}w+\partial_{x}^{3}w-3\left( \lambda-u\right) \partial_{x}w. }[/math] If we integrate this equation then we obtain the result that
provided that the eigenfunction [math]\displaystyle{ w }[/math] is bounded (which is true for the bound state eigenfunctions). This shows that the discrete eigenvalues are unchanged and [math]\displaystyle{ u\left( x,t\right) }[/math] evolves according to the KdV. Many other properties can be found
Scattering Data
For the discrete spectrum the eigenfunctions behave like
as [math]\displaystyle{ x\rightarrow\infty }[/math] with
The continuous spectrum looks like
where [math]\displaystyle{ r }[/math] is the reflection coefficient and [math]\displaystyle{ a }[/math] is the transmission coefficient. This gives us the scattering data at [math]\displaystyle{ t=0 }[/math]
The scattering data evolves as
We can recover [math]\displaystyle{ u }[/math] from scattering data. We write
Then solve
This is a linear integral equation called the \emph{Gelfand-Levitan-Marchenko }equation. We then find [math]\displaystyle{ u }[/math] from
Reflectionless Potential
In general the IST is difficult to solve. However, there is a simplification we can make when we have a reflectionless potential (which we will see gives rise to the soliton solutions). The reflectionless potential is the case when [math]\displaystyle{ r\left( k,0\right) =0 }[/math] for all values of [math]\displaystyle{ k }[/math] for some [math]\displaystyle{ u. }[/math] In this case
then
From the equation we can see that
If we substitute this into the equation,
which leads to
and we can eliminate the sum over [math]\displaystyle{ n }[/math] and the [math]\displaystyle{ e^{-k_{n}y} }[/math] to obtain
which is an algebraic (finite dimensional system) for the unknows [math]\displaystyle{ v_{n}. }[/math].
We can write this as
where [math]\displaystyle{ f_{m}=c_{m}^2\left( t\right) e^{-k_{m}x} }[/math] and
This gives us
This leads to
Lets consider some simple examples. First of all if [math]\displaystyle{ n=1 }[/math] (the single soliton solution) we get
where [math]\displaystyle{ e^{-\alpha}=2c_{0}^{2}\left( 0\right) . }[/math] Therefore
where [math]\displaystyle{ \theta=k_{1}x-4k^{3}t-\alpha/2 }[/math] and [math]\displaystyle{ \sqrt{2k}e^{-\alpha/2}=e^{-kx_{0} } }[/math]. This is of course the single soliton solution.