Difference between revisions of "Template:Incident potential for two dimensions"

From WikiWaves
Jump to navigationJump to search
 
(One intermediate revision by the same user not shown)
Line 20: Line 20:
 
which represents the reflected wave.  
 
which represents the reflected wave.  
  
In any scattering problem <math>|R|^2 + |T|^2 = 1</math> where <math>R</math> and <math>T</math> are the reflection and transmission coefficients respectively. In our case of the semi-infinite dock the <math>|a_{0}| = |R| = 1</math> and <math>|T| = 0</math> as there are no transmitted waves in the region of the dock.
+
In any scattering problem <math>|R|^2 + |T|^2 = 1</math> where <math>R</math> and <math>T</math> are the reflection and transmission coefficients respectively. In our case of the semi-infinite dock <math>|a_{0}| = |R| = 1</math> and <math>|T| = 0</math> as there are no transmitted waves in the region under the dock.

Latest revision as of 21:24, 21 March 2012

Incident potential

To create meaningful solutions of the velocity potential [math]\displaystyle{ \phi }[/math] in the specified domains we add an incident wave term to the expansion for the domain of [math]\displaystyle{ x \lt 0 }[/math] above. The incident potential is a wave of amplitude [math]\displaystyle{ A }[/math] in displacement travelling in the positive [math]\displaystyle{ x }[/math]-direction. We would only see this in the time domain [math]\displaystyle{ \Phi(x,z,t) }[/math] however, in the frequency domain the incident potential can be written as

[math]\displaystyle{ \phi_{\mathrm{I}}(x,z) =e^{-k_{0}x}\chi_{0}\left( z\right). }[/math]

The total velocity (scattered) potential now becomes [math]\displaystyle{ \phi = \phi_{\mathrm{I}} + \phi_{\mathrm{D}} }[/math] for the domain of [math]\displaystyle{ x \lt 0 }[/math].

The first term in the expansion of the diffracted potential for the domain [math]\displaystyle{ x \lt 0 }[/math] is given by

[math]\displaystyle{ a_{0}e^{k_{0}x}\chi_{0}\left( z\right) }[/math]

which represents the reflected wave.

In any scattering problem [math]\displaystyle{ |R|^2 + |T|^2 = 1 }[/math] where [math]\displaystyle{ R }[/math] and [math]\displaystyle{ T }[/math] are the reflection and transmission coefficients respectively. In our case of the semi-infinite dock [math]\displaystyle{ |a_{0}| = |R| = 1 }[/math] and [math]\displaystyle{ |T| = 0 }[/math] as there are no transmitted waves in the region under the dock.