Difference between revisions of "Template:Separation of variables for a free surface"
(32 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
− | == Separation of variables for a free surface == | + | === Separation of variables for a free surface === |
− | We | + | We use [http://en.wikipedia.org/wiki/Separation_of_Variables separation of variables] |
+ | |||
+ | {{separation of variables in two dimensions}} | ||
+ | |||
+ | {{separation of variables for a free surface first part}} | ||
+ | |||
+ | The above equation is a transcendental equation. If we solve for all roots in the complex plane we find that the first root is a pair of imaginary roots. We denote the imaginary solutions of this equation by <math>k_{0}=\pm ik \,</math> and | ||
+ | the positive real solutions by <math>k_{m} \,</math>, <math>m\geq1</math>. The <math>k \,</math> of the imaginary solution is the wavenumber. We put the imaginary roots back into the equation above and use the hyperbolic relations | ||
<center> | <center> | ||
<math> | <math> | ||
− | \ | + | \cos ix = \cosh x, \quad \sin ix = i\sinh x, |
</math> | </math> | ||
</center> | </center> | ||
− | + | to arrive at the dispersion relation | |
<center> | <center> | ||
<math> | <math> | ||
− | \ | + | \alpha = k\tanh kh. |
</math> | </math> | ||
</center> | </center> | ||
− | We | + | We note that for a specified frequency <math>\omega \,</math> the equation determines the wavenumber <math>k \,</math>. |
+ | |||
+ | Finally we define the function <math>Z(z) \,</math> as | ||
<center> | <center> | ||
<math> | <math> | ||
− | \ | + | \chi_{m}\left( z\right) =\frac{\cos k_{m}(z+h)}{\cos k_{m}h},\quad m\geq0 |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
</math> | </math> | ||
</center> | </center> | ||
Line 38: | Line 34: | ||
<center> | <center> | ||
<math> | <math> | ||
− | \int\nolimits_{-h}^{0}\ | + | \int\nolimits_{-h}^{0}\chi_{m}(z)\chi_{n}(z) \mathrm{d} z=A_{n}\delta_{mn} |
</math> | </math> | ||
</center> | </center> | ||
Line 44: | Line 40: | ||
<center> | <center> | ||
<math> | <math> | ||
− | A_{n}=\frac{1}{2}\left( \frac{\cos k_{n}h\sin k_{ | + | A_{n}=\frac{1}{2}\left( \frac{\cos k_{n}h\sin k_{n}h+k_{n}h}{k_{n}\cos |
− | ^{2}k_{n}h}\right) | + | ^{2}k_{n}h}\right). |
</math> | </math> | ||
− | </center> | + | </center> |
Latest revision as of 04:40, 16 June 2015
Separation of variables for a free surface
We use separation of variables
We express the potential as
[math]\displaystyle{ \phi(x,z) = X(x)Z(z)\, }[/math]
and then Laplace's equation becomes
[math]\displaystyle{ \frac{X^{\prime\prime}}{X} = - \frac{Z^{\prime\prime}}{Z} = k^2 }[/math]
The separation of variables equation for deriving free surface eigenfunctions is as follows:
[math]\displaystyle{ Z^{\prime\prime} + k^2 Z =0. }[/math]
subject to the boundary conditions
[math]\displaystyle{ Z^{\prime}(-h) = 0 }[/math]
and
[math]\displaystyle{ Z^{\prime}(0) = \alpha Z(0) }[/math]
We can then use the boundary condition at [math]\displaystyle{ z=-h \, }[/math] to write
[math]\displaystyle{ Z = \frac{\cos k(z+h)}{\cos kh} }[/math]
where we have chosen the value of the coefficent so we have unit value at [math]\displaystyle{ z=0 }[/math]. The boundary condition at the free surface ([math]\displaystyle{ z=0 \, }[/math]) gives rise to:
which is the Dispersion Relation for a Free Surface
The above equation is a transcendental equation. If we solve for all roots in the complex plane we find that the first root is a pair of imaginary roots. We denote the imaginary solutions of this equation by [math]\displaystyle{ k_{0}=\pm ik \, }[/math] and the positive real solutions by [math]\displaystyle{ k_{m} \, }[/math], [math]\displaystyle{ m\geq1 }[/math]. The [math]\displaystyle{ k \, }[/math] of the imaginary solution is the wavenumber. We put the imaginary roots back into the equation above and use the hyperbolic relations
[math]\displaystyle{ \cos ix = \cosh x, \quad \sin ix = i\sinh x, }[/math]
to arrive at the dispersion relation
[math]\displaystyle{ \alpha = k\tanh kh. }[/math]
We note that for a specified frequency [math]\displaystyle{ \omega \, }[/math] the equation determines the wavenumber [math]\displaystyle{ k \, }[/math].
Finally we define the function [math]\displaystyle{ Z(z) \, }[/math] as
[math]\displaystyle{ \chi_{m}\left( z\right) =\frac{\cos k_{m}(z+h)}{\cos k_{m}h},\quad m\geq0 }[/math]
as the vertical eigenfunction of the potential in the open water region. From Sturm-Liouville theory the vertical eigenfunctions are orthogonal. They can be normalised to be orthonormal, but this has no advantages for a numerical implementation. It can be shown that
[math]\displaystyle{ \int\nolimits_{-h}^{0}\chi_{m}(z)\chi_{n}(z) \mathrm{d} z=A_{n}\delta_{mn} }[/math]
where
[math]\displaystyle{ A_{n}=\frac{1}{2}\left( \frac{\cos k_{n}h\sin k_{n}h+k_{n}h}{k_{n}\cos ^{2}k_{n}h}\right). }[/math]