Difference between revisions of "Connection betwen KdV and the Schrodinger Equation"
(13 intermediate revisions by 2 users not shown) | |||
Line 28: | Line 28: | ||
For the discrete spectrum the eigenfunctions behave like | For the discrete spectrum the eigenfunctions behave like | ||
<center><math> | <center><math> | ||
− | w_{n}\left( x\right) =c_{n}\left( t\right) e^{-k_{n}x} | + | w_{n}\left( x,t\right) =c_{n}\left( t\right) e^{-k_{n}x} |
</math></center> | </math></center> | ||
as <math>x\rightarrow\infty</math> with | as <math>x\rightarrow\infty</math> with | ||
<center><math> | <center><math> | ||
− | \int_{-\infty}^{\infty}\left( w_{n}\left( x\right) \right) ^{2} | + | \int_{-\infty}^{\infty}\left( w_{n}\left( x,t\right) \right) ^{2}\mathrm{d}x=1 |
</math></center> | </math></center> | ||
The continuous spectrum looks like | The continuous spectrum looks like | ||
<center><math> | <center><math> | ||
− | + | w\left( x,t\right) \approx \mathrm{e}^{-\mathrm{i}kx}+r\left( k,t\right) \mathrm{e}^{\mathrm{i}kx} | |
,\ \ \ x\rightarrow-\infty | ,\ \ \ x\rightarrow-\infty | ||
</math></center> | </math></center> | ||
<center><math> | <center><math> | ||
− | + | w\left( x,t\right) \approx a\left( k,t\right) \mathrm{e}^{-\mathrm{i}kx},\ \ \ x\rightarrow | |
\infty | \infty | ||
</math></center> | </math></center> | ||
Line 51: | Line 51: | ||
The scattering data evolves as | The scattering data evolves as | ||
<center><math> | <center><math> | ||
− | k_{n}=k_{n} | + | k_{n}(t)=k_{n}(0) = k_{n} |
</math></center> | </math></center> | ||
<center><math> | <center><math> | ||
Line 65: | Line 65: | ||
<center><math> | <center><math> | ||
F\left( x,t\right) =\sum_{n=1}^{N}c_{n}^{2}\left( t\right) e^{-k_{n} | F\left( x,t\right) =\sum_{n=1}^{N}c_{n}^{2}\left( t\right) e^{-k_{n} | ||
− | x}+\frac{1}{2\pi}\int_{-\infty}^{\infty}r\left( k,t\right) \mathrm{e}^{\mathrm{i}kx} | + | x}+\frac{1}{2\pi}\int_{-\infty}^{\infty}r\left( k,t\right) \mathrm{e}^{\mathrm{i}kx}\mathrm{d}k |
</math></center> | </math></center> | ||
Then solve | Then solve | ||
<center><math> | <center><math> | ||
K\left( x,y;t\right) +F\left( x+y;t\right) +\int_{x}^{\infty}K\left( | K\left( x,y;t\right) +F\left( x+y;t\right) +\int_{x}^{\infty}K\left( | ||
− | x,z;t\right) F\left( z+y;t\right) | + | x,z;t\right) F\left( z+y;t\right) \mathrm{d}z=0 |
</math></center> | </math></center> | ||
− | This is a linear integral equation called the | + | This is a linear integral equation called the Gelfand-Levitan-Marchenko equation. We then find <math>u</math> from |
− | |||
<center><math> | <center><math> | ||
u\left( x,t\right) =2\partial_{x}K\left( x,x,t\right) | u\left( x,t\right) =2\partial_{x}K\left( x,x,t\right) | ||
</math></center> | </math></center> | ||
− | |||
==Reflectionless Potential== | ==Reflectionless Potential== | ||
Line 92: | Line 90: | ||
K\left( x,y,t\right) +\sum_{n=1}^{N}c_{n}^{2}\left( t\right) | K\left( x,y,t\right) +\sum_{n=1}^{N}c_{n}^{2}\left( t\right) | ||
e^{-k_{n}\left( x+y\right) }+\int_{x}^{\infty}K\left( x,z,t\right) | e^{-k_{n}\left( x+y\right) }+\int_{x}^{\infty}K\left( x,z,t\right) | ||
− | \sum_{n=1}^{N}c_{n}^{2}\left( t\right) e^{-k_{n}\left( y+z\right) } | + | \sum_{n=1}^{N}c_{n}^{2}\left( t\right) e^{-k_{n}\left( y+z\right) }\mathrm{d}z=0 |
</math></center> | </math></center> | ||
From the equation we can see that | From the equation we can see that | ||
<center><math> | <center><math> | ||
− | K\left( x,y,t\right) =-\sum_{ | + | K\left( x,y,t\right) =-\sum_{n=1}^{N}v_{n}\left( x,t\right) e^{-k_{n}y} |
</math></center> | </math></center> | ||
If we substitute this into the equation, | If we substitute this into the equation, | ||
Line 103: | Line 101: | ||
^{2}\left( t\right) e^{-k_{n}\left( x+y\right) }+\int_{x}^{\infty} | ^{2}\left( t\right) e^{-k_{n}\left( x+y\right) }+\int_{x}^{\infty} | ||
-\sum_{m=1}^{N}v_{m}\left( x,t\right) e^{-k_{m}z}\sum_{n=1}^{N}c_{n} | -\sum_{m=1}^{N}v_{m}\left( x,t\right) e^{-k_{m}z}\sum_{n=1}^{N}c_{n} | ||
− | ^{2}\left( t\right) e^{-k_{n}\left( y+z\right) } | + | ^{2}\left( t\right) e^{-k_{n}\left( y+z\right) }\mathrm{d}z=0 |
</math></center> | </math></center> | ||
which leads to | which leads to | ||
Line 127: | Line 125: | ||
</math></center> | </math></center> | ||
where <math>f_{m}=c_{m}^2\left( t\right) e^{-k_{m}x}</math> and | where <math>f_{m}=c_{m}^2\left( t\right) e^{-k_{m}x}</math> and | ||
− | the elements of <math>mathbf{C}</math> are given by | + | the elements of <math>\mathbf{C}</math> are given by |
<center><math> | <center><math> | ||
− | c_{mn}= | + | c_{mn} = \frac{c_{n}^2\left( t\right)} |
{k_{n}+k_{m}}e^{-\left( k_{m}+k_{n}\right) x} | {k_{n}+k_{m}}e^{-\left( k_{m}+k_{n}\right) x} | ||
</math></center> | </math></center> | ||
Line 147: | Line 145: | ||
e^{-2k_{1}x}}{1+\frac{c_{1}^2\left( t\right) } | e^{-2k_{1}x}}{1+\frac{c_{1}^2\left( t\right) } | ||
{2k_{1}}e^{-2 k_{1} x}}\\ | {2k_{1}}e^{-2 k_{1} x}}\\ | ||
− | & =\frac{-1}{ | + | & =\frac{-1}{e^{2k_{1}x - 8k_{1}^{3}t-\alpha} + 1/2k_1} |
\end{matrix}</math></center> | \end{matrix}</math></center> | ||
− | where <math>e^{-\alpha}= | + | where <math>e^{-\alpha}=1/c_{0}^{2}\left( 0\right) .</math> Therefore |
<center><math>\begin{align} | <center><math>\begin{align} | ||
u\left( x,t\right) & =2\partial_{x}K\left( x,x,t\right) \\ | u\left( x,t\right) & =2\partial_{x}K\left( x,x,t\right) \\ | ||
− | & =\frac{4k_{1}e^{ | + | & =\frac{4k_{1}e^{2k_{1}x-8k_{1}^{3}t-\alpha}}{\left( e^{2k_{1} |
− | x | + | x-8k_{1}^{3}t-\alpha} + 1/2k_1\right) ^{2}}\\ |
& =\frac{8k_{1}^{2}}{\left( \sqrt{2k_{1}}e^{\theta}+e^{-\theta}/\sqrt | & =\frac{8k_{1}^{2}}{\left( \sqrt{2k_{1}}e^{\theta}+e^{-\theta}/\sqrt | ||
{2k_{1}}\right) ^{2}}\\ | {2k_{1}}\right) ^{2}}\\ | ||
Line 161: | Line 159: | ||
where <math>\theta=k_{1}x-4k^{3}t-\alpha/2</math> and <math>\sqrt{2k}e^{-\alpha/2}=e^{-kx_{0} | where <math>\theta=k_{1}x-4k^{3}t-\alpha/2</math> and <math>\sqrt{2k}e^{-\alpha/2}=e^{-kx_{0} | ||
}</math>. This is of course the single soliton solution. | }</math>. This is of course the single soliton solution. | ||
+ | |||
+ | |||
+ | == Lecture Videos == | ||
+ | |||
+ | === Part 1 === | ||
+ | |||
+ | {{#ev:youtube|KHGoPCoyP28}} | ||
+ | |||
+ | === Part 2 === | ||
+ | |||
+ | {{#ev:youtube|8mVq6MQWO3I}} | ||
+ | |||
+ | === Part 3 === | ||
+ | |||
+ | {{#ev:youtube|meTgaaGKsfQ}} | ||
+ | |||
+ | === Part 4 === | ||
+ | |||
+ | {{#ev:youtube|AfAQyjzvJUU}} |
Latest revision as of 05:30, 14 September 2023
Nonlinear PDE's Course | |
---|---|
Current Topic | Connection betwen KdV and the Schrodinger Equation |
Next Topic | Example Calculations for the KdV and IST |
Previous Topic | Properties of the Linear Schrodinger Equation |
If we substitute the relationship
into the KdV after some manipulation we obtain
where [math]\displaystyle{ Q=\partial_{t}w+\partial_{x}^{3}w-3\left( \lambda-u\right) \partial_{x}w. }[/math] If we integrate this equation then we obtain the result that
provided that the eigenfunction [math]\displaystyle{ w }[/math] is bounded (which is true for the bound state eigenfunctions). This shows that the discrete eigenvalues are unchanged and [math]\displaystyle{ u\left( x,t\right) }[/math] evolves according to the KdV. Many other properties can be found
Scattering Data
For the discrete spectrum the eigenfunctions behave like
as [math]\displaystyle{ x\rightarrow\infty }[/math] with
The continuous spectrum looks like
where [math]\displaystyle{ r }[/math] is the reflection coefficient and [math]\displaystyle{ a }[/math] is the transmission coefficient. This gives us the scattering data at [math]\displaystyle{ t=0 }[/math]
The scattering data evolves as
We can recover [math]\displaystyle{ u }[/math] from scattering data. We write
Then solve
This is a linear integral equation called the Gelfand-Levitan-Marchenko equation. We then find [math]\displaystyle{ u }[/math] from
Reflectionless Potential
In general the IST is difficult to solve. However, there is a simplification we can make when we have a reflectionless potential (which we will see gives rise to the soliton solutions). The reflectionless potential is the case when [math]\displaystyle{ r\left( k,0\right) =0 }[/math] for all values of [math]\displaystyle{ k }[/math] for some [math]\displaystyle{ u. }[/math] In this case
then
From the equation we can see that
If we substitute this into the equation,
which leads to
and we can eliminate the sum over [math]\displaystyle{ n }[/math] and the [math]\displaystyle{ e^{-k_{n}y} }[/math] to obtain
which is an algebraic (finite dimensional system) for the unknows [math]\displaystyle{ v_{n}. }[/math].
We can write this as
where [math]\displaystyle{ f_{m}=c_{m}^2\left( t\right) e^{-k_{m}x} }[/math] and the elements of [math]\displaystyle{ \mathbf{C} }[/math] are given by
This gives us
We then find [math]\displaystyle{ u(x,t) }[/math] from [math]\displaystyle{ K }[/math].
Single Soliton Example
If [math]\displaystyle{ n=1 }[/math] (a single soliton solution) we get
where [math]\displaystyle{ e^{-\alpha}=1/c_{0}^{2}\left( 0\right) . }[/math] Therefore
where [math]\displaystyle{ \theta=k_{1}x-4k^{3}t-\alpha/2 }[/math] and [math]\displaystyle{ \sqrt{2k}e^{-\alpha/2}=e^{-kx_{0} } }[/math]. This is of course the single soliton solution.