Difference between revisions of "Connection betwen KdV and the Schrodinger Equation"

From WikiWaves
Jump to navigationJump to search
 
(3 intermediate revisions by the same user not shown)
Line 28: Line 28:
 
For the discrete spectrum the eigenfunctions behave like
 
For the discrete spectrum the eigenfunctions behave like
 
<center><math>
 
<center><math>
w_{n}\left(  x\right)  =c_{n}\left(  t\right)  e^{-k_{n}x}
+
w_{n}\left(  x,t\right)  =c_{n}\left(  t\right)  e^{-k_{n}x}
 
</math></center>
 
</math></center>
 
as <math>x\rightarrow\infty</math> with
 
as <math>x\rightarrow\infty</math> with
 
<center><math>
 
<center><math>
\int_{-\infty}^{\infty}\left(  w_{n}\left(  x\right)  \right)  ^{2}\mathrm{d}x=1
+
\int_{-\infty}^{\infty}\left(  w_{n}\left(  x,t\right)  \right)  ^{2}\mathrm{d}x=1
 
</math></center>
 
</math></center>
 
The continuous spectrum looks like
 
The continuous spectrum looks like
Line 51: Line 51:
 
The scattering data evolves as
 
The scattering data evolves as
 
<center><math>
 
<center><math>
k_{n}=k_{n}
+
k_{n}(t)=k_{n}(0) = k_{n}
 
</math></center>
 
</math></center>
 
<center><math>
 
<center><math>
Line 145: Line 145:
 
e^{-2k_{1}x}}{1+\frac{c_{1}^2\left(  t\right)  }
 
e^{-2k_{1}x}}{1+\frac{c_{1}^2\left(  t\right)  }
 
{2k_{1}}e^{-2 k_{1} x}}\
 
{2k_{1}}e^{-2 k_{1} x}}\
&  =\frac{-1}{e^{-2k_{1}x + 8k_{1}^{3}t-\alpha} + 1/2k_1}
+
&  =\frac{-1}{e^{2k_{1}x - 8k_{1}^{3}t-\alpha} + 1/2k_1}
 
\end{matrix}</math></center>
 
\end{matrix}</math></center>
 
where <math>e^{-\alpha}=1/c_{0}^{2}\left(  0\right)  .</math> Therefore
 
where <math>e^{-\alpha}=1/c_{0}^{2}\left(  0\right)  .</math> Therefore
Line 159: Line 159:
 
where <math>\theta=k_{1}x-4k^{3}t-\alpha/2</math> and <math>\sqrt{2k}e^{-\alpha/2}=e^{-kx_{0}
 
where <math>\theta=k_{1}x-4k^{3}t-\alpha/2</math> and <math>\sqrt{2k}e^{-\alpha/2}=e^{-kx_{0}
 
}</math>. This is of course the single soliton solution.
 
}</math>. This is of course the single soliton solution.
 +
 +
 +
== Lecture Videos ==
 +
 +
=== Part 1 ===
 +
 +
{{#ev:youtube|KHGoPCoyP28}}
 +
 +
=== Part 2 ===
 +
 +
{{#ev:youtube|8mVq6MQWO3I}}
 +
 +
=== Part 3 ===
 +
 +
{{#ev:youtube|meTgaaGKsfQ}}
 +
 +
=== Part 4 ===
 +
 +
{{#ev:youtube|AfAQyjzvJUU}}

Latest revision as of 05:30, 14 September 2023

Nonlinear PDE's Course
Current Topic Connection betwen KdV and the Schrodinger Equation
Next Topic Example Calculations for the KdV and IST
Previous Topic Properties of the Linear Schrodinger Equation


If we substitute the relationship

x2w+uw=λw

into the KdV after some manipulation we obtain

tλw2+x(wxQxwQ)=0

where Q=tw+x3w3(λu)xw. If we integrate this equation then we obtain the result that

tλ=0

provided that the eigenfunction w is bounded (which is true for the bound state eigenfunctions). This shows that the discrete eigenvalues are unchanged and u(x,t) evolves according to the KdV. Many other properties can be found

Scattering Data

For the discrete spectrum the eigenfunctions behave like

wn(x,t)=cn(t)eknx

as x with

(wn(x,t))2dx=1

The continuous spectrum looks like

w(x,t)eikx+r(k,t)eikx,   x
w(x,t)a(k,t)eikx,   x

where r is the reflection coefficient and a is the transmission coefficient. This gives us the scattering data at t=0

S(λ,0)=({kn,cn(0)}n=1N,r(k,0),a(k,0))

The scattering data evolves as

kn(t)=kn(0)=kn
cn(t)=cn(0)e4kn3t
r(k,t)=r(k,0)e8ik3t
a(k,t)=a(k,0)

We can recover u from scattering data. We write

F(x,t)=n=1Ncn2(t)eknx+12πr(k,t)eikxdk

Then solve

K(x,y;t)+F(x+y;t)+xK(x,z;t)F(z+y;t)dz=0

This is a linear integral equation called the Gelfand-Levitan-Marchenko equation. We then find u from

u(x,t)=2xK(x,x,t)

Reflectionless Potential

In general the IST is difficult to solve. However, there is a simplification we can make when we have a reflectionless potential (which we will see gives rise to the soliton solutions). The reflectionless potential is the case when r(k,0)=0 for all values of k for some u. In this case

F(x,t)=n=1Ncn2(t)eknx

then

K(x,y,t)+n=1Ncn2(t)ekn(x+y)+xK(x,z,t)n=1Ncn2(t)ekn(y+z)dz=0

From the equation we can see that

K(x,y,t)=n=1Nvn(x,t)ekny

If we substitute this into the equation,

n=1Nvn(x,t)ekny+n=1Ncn2(t)ekn(x+y)+xm=1Nvm(x,t)ekmzn=1Ncn2(t)ekn(y+z)dz=0

which leads to

n=1Nvn(x,t)ekny+n=1Ncn2(t)ekn(x+y)n=1Nm=1Ncn2(t)kn+kmvm(x)ekmxekn(y+x)=0

and we can eliminate the sum over n and the ekny to obtain

vn(x,t)+cn2(t)eknxm=1Ncn2(t)kn+kmvm(x,t)e(km+kn)x=0

which is an algebraic (finite dimensional system) for the unknows vn..

We can write this as

(I+C)v=f

where fm=cm2(t)ekmx and the elements of C are given by

cmn=cn2(t)kn+kme(km+kn)x

This gives us

K(x,y,t)=m=1N(I+C)1fekmy

We then find u(x,t) from K.

Single Soliton Example

If n=1 (a single soliton solution) we get

K(x,x,t)=c12(t)e2k1x1+c12(t)2k1e2k1x=1e2k1x8k13tα+1/2k1

where eα=1/c02(0). Therefore

u(x,t)=2xK(x,x,t)=4k1e2k1x8k13tα(e2k1x8k13tα+1/2k1)2=8k12(2k1eθ+eθ/2k1)2=2k12sech2{k1(xx0)4k13t}

where θ=k1x4k3tα/2 and 2keα/2=ekx0. This is of course the single soliton solution.


Lecture Videos

Part 1

Part 2

Part 3

Part 4