Difference between revisions of "Free-Surface Green Function"
Line 1: | Line 1: | ||
+ | = Introduction = | ||
+ | |||
+ | = Equations for the Green function = | ||
+ | |||
The Free-Surface Green function is a function which satisfies the following equation (in [[Finite Depth]]) | The Free-Surface Green function is a function which satisfies the following equation (in [[Finite Depth]]) | ||
+ | <math>\mathbf{x}=(x,y,z)</math> and <math>\mathbf{\xi}=(a,b,c)</math> | ||
<math> | <math> | ||
− | \nabla_{\mathbf{ | + | \nabla_{\mathbf{x}}^{2}G(\mathbf{x},\mathbf{y})=\delta(\mathbf{x}-\mathbf{\xi}), \, -\infty<z<0 |
</math> | </math> | ||
Line 19: | Line 24: | ||
where <math>k_{\infty}</math> is the wavenumber in [[Infinite Depth]] which is given by | where <math>k_{\infty}</math> is the wavenumber in [[Infinite Depth]] which is given by | ||
<math>k_{\infty}=\omega^2/g</math> where <math>g</math> is gravity. | <math>k_{\infty}=\omega^2/g</math> where <math>g</math> is gravity. | ||
+ | |||
+ | = Two Dimensional Representations = | ||
Many expressions for the Green function have been given. In two dimensions it can be written | Many expressions for the Green function have been given. In two dimensions it can be written | ||
as | as | ||
+ | |||
+ | = Three Dimensional Representations = | ||
In three dimensions and infinite depth the Green function <math>G</math>, for <math>r>0</math>, was | In three dimensions and infinite depth the Green function <math>G</math>, for <math>r>0</math>, was | ||
given by {\em Havelock\/} \cite{havelock55} as | given by {\em Havelock\/} \cite{havelock55} as | ||
+ | |||
+ | Let <math>(r,\theta)</math> be spherical coordinates such that | ||
+ | |||
+ | <math> | ||
+ | x - a = r \cos \theta,\, | ||
+ | </math> | ||
+ | |||
+ | <math> | ||
+ | y - b = r \sin \theta,\, | ||
+ | </math> | ||
+ | |||
+ | and let <math>R_0</math> and <math>R_1</math> denote the | ||
+ | distance from the source point <math>\mathbf{\xi} = (a,b,c)</math> | ||
+ | and the distance from the ''mirror'' source point | ||
+ | <math>\bar{\mathbf{\xi}} = (a,b,-c)</math> respectively, | ||
+ | <math>R_0^2 = (x-a)^2 + (y-b)^2 + (z-c)^2</math> and <math>R_1^2 = (x-a)^2 + (y-b)^2 + | ||
+ | (z+c)^2</math>. | ||
<math> | <math> | ||
Line 55: | Line 81: | ||
<math> | <math> | ||
G(\mathbf{x};\mathbf{\xi}) = \frac{1}{4 \pi R_0} + \frac{1}{4 \pi R_1} | G(\mathbf{x};\mathbf{\xi}) = \frac{1}{4 \pi R_0} + \frac{1}{4 \pi R_1} | ||
− | - \frac{\alpha}{4} e^{\alpha (z+c)} \Big( | + | - \frac{\alpha}{4} e^{\alpha (z+c)} \Big(\mathbf{H}_0(\alpha r) + |
Y_0(\alpha r) - 2i J_0 (\alpha r) + \frac{2}{\pi} | Y_0(\alpha r) - 2i J_0 (\alpha r) + \frac{2}{\pi} | ||
\int\limits_{z+c}^0 \frac{e^{-\alpha \eta}}{\sqrt{r^2 + \eta^2}} | \int\limits_{z+c}^0 \frac{e^{-\alpha \eta}}{\sqrt{r^2 + \eta^2}} | ||
Line 64: | Line 90: | ||
of the first and second | of the first and second | ||
kind and <math>\mathbf{H}_0</math> is the Struve function of order zero. | kind and <math>\mathbf{H}_0</math> is the Struve function of order zero. | ||
+ | |||
+ | The expression due to [[Peter_Meylan_2004a|Peter and Meylan 2004]] is | ||
+ | |||
+ | <math> | ||
+ | G(\mathbf{x};\mathbf{\xi}) = \frac{i \alpha}{2} e^{\alpha (z+c)} | ||
+ | H_0^{(1)}(\alpha r) + \frac{1}{\pi^2} \int\limits_0^{\infty} \Big( \cos | ||
+ | \eta z + \frac{\alpha}{\eta} \sin \eta z \Big) | ||
+ | \times \frac{\eta^2}{\eta^2+\alpha^2} \Big( \cos \eta c + | ||
+ | \frac{\alpha}{\eta} \sin \eta c \Big) K_0(\eta r) d\eta. | ||
+ | <math></math> |
Revision as of 09:51, 23 May 2006
Introduction
Equations for the Green function
The Free-Surface Green function is a function which satisfies the following equation (in Finite Depth) [math]\displaystyle{ \mathbf{x}=(x,y,z) }[/math] and [math]\displaystyle{ \mathbf{\xi}=(a,b,c) }[/math]
[math]\displaystyle{ \nabla_{\mathbf{x}}^{2}G(\mathbf{x},\mathbf{y})=\delta(\mathbf{x}-\mathbf{\xi}), \, -\infty\lt z\lt 0 }[/math]
[math]\displaystyle{ \frac{\partial G}{\partial z}=0, \, z=h, }[/math]
[math]\displaystyle{ \frac{\partial G}{\partial z} = k_{\infty}\phi,\,z\in\Gamma_s, }[/math]
[math]\displaystyle{ \frac{\partial G}{\partial z} = L\phi, \, z\in\Gamma_w. }[/math]
where [math]\displaystyle{ k_{\infty} }[/math] is the wavenumber in Infinite Depth which is given by [math]\displaystyle{ k_{\infty}=\omega^2/g }[/math] where [math]\displaystyle{ g }[/math] is gravity.
Two Dimensional Representations
Many expressions for the Green function have been given. In two dimensions it can be written as
Three Dimensional Representations
In three dimensions and infinite depth the Green function [math]\displaystyle{ G }[/math], for [math]\displaystyle{ r\gt 0 }[/math], was given by {\em Havelock\/} \cite{havelock55} as
Let [math]\displaystyle{ (r,\theta) }[/math] be spherical coordinates such that
[math]\displaystyle{ x - a = r \cos \theta,\, }[/math]
[math]\displaystyle{ y - b = r \sin \theta,\, }[/math]
and let [math]\displaystyle{ R_0 }[/math] and [math]\displaystyle{ R_1 }[/math] denote the distance from the source point [math]\displaystyle{ \mathbf{\xi} = (a,b,c) }[/math] and the distance from the mirror source point [math]\displaystyle{ \bar{\mathbf{\xi}} = (a,b,-c) }[/math] respectively, [math]\displaystyle{ R_0^2 = (x-a)^2 + (y-b)^2 + (z-c)^2 }[/math] and [math]\displaystyle{ R_1^2 = (x-a)^2 + (y-b)^2 + (z+c)^2 }[/math].
[math]\displaystyle{ G(\mathbf{x};\mathbf{\xi}) = \frac{i \alpha}{2} e^{\alpha (z+c)} \, H_0^{(1)}(\alpha r) + \frac{1}{4 \pi R_0} + \frac{1}{4 \pi R_1} - \frac{1}{\pi^2} \int\limits_{0}^{\infty} \frac{\alpha}{\eta^2 + \alpha^2} \big( \alpha \cos \eta (z+c) - \eta \sin \eta (z+c) \big) K_0(\eta r) d\eta, }[/math]
where [math]\displaystyle{ H^{(1)}_0 }[/math] and [math]\displaystyle{ K_0 }[/math] denote the Hankel function of the first kind and the modified Bessel function of the second kind, both of order zero as defined in {\em Abramowitz \& Stegun} \cite{abr_ste}. This Green function will be referred to as {\em Havelock\/}'s Green function. It should be noted that {\em Havelock\/}'s Green function can also be written in the following closely related form,
[math]\displaystyle{ G(\mathbf{x};\mathbf{\xi}) = \frac{i \alpha}{2} e^{\alpha (z+c)} \, H_0^{(1)}(\alpha r) + \frac{1}{4 \pi R_0} + \frac{1}{2 \pi^2} \int\limits_{0}^{\infty} \frac{(\eta^2 - \alpha^2) \cos \eta (z+c) + 2 \eta \alpha \sin \eta (z+c)}{\eta^2 + \alpha^2} K_0(\eta r) d\eta }[/math]
\cite{linton01}. An equivalent representation is due to {\em Kim} \cite{kim65} for [math]\displaystyle{ r\gt 0 }[/math], although implicitly given in the work of {\em Havelock} \cite{havelock55}, and is given by
[math]\displaystyle{ G(\mathbf{x};\mathbf{\xi}) = \frac{1}{4 \pi R_0} + \frac{1}{4 \pi R_1} - \frac{\alpha}{4} e^{\alpha (z+c)} \Big(\mathbf{H}_0(\alpha r) + Y_0(\alpha r) - 2i J_0 (\alpha r) + \frac{2}{\pi} \int\limits_{z+c}^0 \frac{e^{-\alpha \eta}}{\sqrt{r^2 + \eta^2}} d\eta \Big), }[/math]
where [math]\displaystyle{ J_0 }[/math] and [math]\displaystyle{ Y_0 }[/math] are the Bessel functions of order zero of the first and second kind and [math]\displaystyle{ \mathbf{H}_0 }[/math] is the Struve function of order zero.
The expression due to Peter and Meylan 2004 is
[math]\displaystyle{ G(\mathbf{x};\mathbf{\xi}) = \frac{i \alpha}{2} e^{\alpha (z+c)} H_0^{(1)}(\alpha r) + \frac{1}{\pi^2} \int\limits_0^{\infty} \Big( \cos \eta z + \frac{\alpha}{\eta} \sin \eta z \Big) \times \frac{\eta^2}{\eta^2+\alpha^2} \Big( \cos \eta c + \frac{\alpha}{\eta} \sin \eta c \Big) K_0(\eta r) d\eta. \lt math\gt }[/math]