Difference between revisions of "Free-Surface Green Function"
Line 31: | Line 31: | ||
= Three Dimensional Representations = | = Three Dimensional Representations = | ||
+ | |||
+ | = [[Infinite Depth]] = | ||
In three dimensions and infinite depth the Green function <math>G</math>, for <math>r>0</math>, was | In three dimensions and infinite depth the Green function <math>G</math>, for <math>r>0</math>, was | ||
Line 91: | Line 93: | ||
kind and <math>\mathbf{H}_0</math> is the Struve function of order zero. | kind and <math>\mathbf{H}_0</math> is the Struve function of order zero. | ||
− | The expression due to [[ | + | The expression due to [[Peter_Meylan_2004b|Peter and Meylan 2004]] is |
<math> | <math> | ||
Line 97: | Line 99: | ||
H_0^{(1)}(\alpha r) + \frac{1}{\pi^2} \int\limits_0^{\infty} \Big( \cos | H_0^{(1)}(\alpha r) + \frac{1}{\pi^2} \int\limits_0^{\infty} \Big( \cos | ||
\eta z + \frac{\alpha}{\eta} \sin \eta z \Big) | \eta z + \frac{\alpha}{\eta} \sin \eta z \Big) | ||
− | + | \frac{\eta^2}{\eta^2+\alpha^2} \Big( \cos \eta c + | |
\frac{\alpha}{\eta} \sin \eta c \Big) K_0(\eta r) d\eta. | \frac{\alpha}{\eta} \sin \eta c \Big) K_0(\eta r) d\eta. | ||
− | + | </math> |
Revision as of 09:53, 23 May 2006
Introduction
Equations for the Green function
The Free-Surface Green function is a function which satisfies the following equation (in Finite Depth) [math]\displaystyle{ \mathbf{x}=(x,y,z) }[/math] and [math]\displaystyle{ \mathbf{\xi}=(a,b,c) }[/math]
[math]\displaystyle{ \nabla_{\mathbf{x}}^{2}G(\mathbf{x},\mathbf{y})=\delta(\mathbf{x}-\mathbf{\xi}), \, -\infty\lt z\lt 0 }[/math]
[math]\displaystyle{ \frac{\partial G}{\partial z}=0, \, z=h, }[/math]
[math]\displaystyle{ \frac{\partial G}{\partial z} = k_{\infty}\phi,\,z\in\Gamma_s, }[/math]
[math]\displaystyle{ \frac{\partial G}{\partial z} = L\phi, \, z\in\Gamma_w. }[/math]
where [math]\displaystyle{ k_{\infty} }[/math] is the wavenumber in Infinite Depth which is given by [math]\displaystyle{ k_{\infty}=\omega^2/g }[/math] where [math]\displaystyle{ g }[/math] is gravity.
Two Dimensional Representations
Many expressions for the Green function have been given. In two dimensions it can be written as
Three Dimensional Representations
Infinite Depth
In three dimensions and infinite depth the Green function [math]\displaystyle{ G }[/math], for [math]\displaystyle{ r\gt 0 }[/math], was given by {\em Havelock\/} \cite{havelock55} as
Let [math]\displaystyle{ (r,\theta) }[/math] be spherical coordinates such that
[math]\displaystyle{ x - a = r \cos \theta,\, }[/math]
[math]\displaystyle{ y - b = r \sin \theta,\, }[/math]
and let [math]\displaystyle{ R_0 }[/math] and [math]\displaystyle{ R_1 }[/math] denote the distance from the source point [math]\displaystyle{ \mathbf{\xi} = (a,b,c) }[/math] and the distance from the mirror source point [math]\displaystyle{ \bar{\mathbf{\xi}} = (a,b,-c) }[/math] respectively, [math]\displaystyle{ R_0^2 = (x-a)^2 + (y-b)^2 + (z-c)^2 }[/math] and [math]\displaystyle{ R_1^2 = (x-a)^2 + (y-b)^2 + (z+c)^2 }[/math].
[math]\displaystyle{ G(\mathbf{x};\mathbf{\xi}) = \frac{i \alpha}{2} e^{\alpha (z+c)} \, H_0^{(1)}(\alpha r) + \frac{1}{4 \pi R_0} + \frac{1}{4 \pi R_1} - \frac{1}{\pi^2} \int\limits_{0}^{\infty} \frac{\alpha}{\eta^2 + \alpha^2} \big( \alpha \cos \eta (z+c) - \eta \sin \eta (z+c) \big) K_0(\eta r) d\eta, }[/math]
where [math]\displaystyle{ H^{(1)}_0 }[/math] and [math]\displaystyle{ K_0 }[/math] denote the Hankel function of the first kind and the modified Bessel function of the second kind, both of order zero as defined in {\em Abramowitz \& Stegun} \cite{abr_ste}. This Green function will be referred to as {\em Havelock\/}'s Green function. It should be noted that {\em Havelock\/}'s Green function can also be written in the following closely related form,
[math]\displaystyle{ G(\mathbf{x};\mathbf{\xi}) = \frac{i \alpha}{2} e^{\alpha (z+c)} \, H_0^{(1)}(\alpha r) + \frac{1}{4 \pi R_0} + \frac{1}{2 \pi^2} \int\limits_{0}^{\infty} \frac{(\eta^2 - \alpha^2) \cos \eta (z+c) + 2 \eta \alpha \sin \eta (z+c)}{\eta^2 + \alpha^2} K_0(\eta r) d\eta }[/math]
\cite{linton01}. An equivalent representation is due to {\em Kim} \cite{kim65} for [math]\displaystyle{ r\gt 0 }[/math], although implicitly given in the work of {\em Havelock} \cite{havelock55}, and is given by
[math]\displaystyle{ G(\mathbf{x};\mathbf{\xi}) = \frac{1}{4 \pi R_0} + \frac{1}{4 \pi R_1} - \frac{\alpha}{4} e^{\alpha (z+c)} \Big(\mathbf{H}_0(\alpha r) + Y_0(\alpha r) - 2i J_0 (\alpha r) + \frac{2}{\pi} \int\limits_{z+c}^0 \frac{e^{-\alpha \eta}}{\sqrt{r^2 + \eta^2}} d\eta \Big), }[/math]
where [math]\displaystyle{ J_0 }[/math] and [math]\displaystyle{ Y_0 }[/math] are the Bessel functions of order zero of the first and second kind and [math]\displaystyle{ \mathbf{H}_0 }[/math] is the Struve function of order zero.
The expression due to Peter and Meylan 2004 is
[math]\displaystyle{ G(\mathbf{x};\mathbf{\xi}) = \frac{i \alpha}{2} e^{\alpha (z+c)} H_0^{(1)}(\alpha r) + \frac{1}{\pi^2} \int\limits_0^{\infty} \Big( \cos \eta z + \frac{\alpha}{\eta} \sin \eta z \Big) \frac{\eta^2}{\eta^2+\alpha^2} \Big( \cos \eta c + \frac{\alpha}{\eta} \sin \eta c \Big) K_0(\eta r) d\eta. }[/math]