Difference between revisions of "Interaction Theory for Infinite Arrays"
From WikiWaves
Jump to navigationJump to searchLine 15: | Line 15: | ||
</math></center> | </math></center> | ||
<math>m \in \mathbb{N}</math>, <math>\mu \in \mathbb{Z}</math>, <math>l=1,\dots,N</math>. | <math>m \in \mathbb{N}</math>, <math>\mu \in \mathbb{Z}</math>, <math>l=1,\dots,N</math>. | ||
+ | |||
+ | For the infinite array, some simplifications of this system can be made. First of all, the bodies are aligned in an evenly spaced array. Denoting the spacing by <math>R</math>, we have <math>R_{jl} = \abs{j-l} R</math> and | ||
+ | |||
+ | <center><math> | ||
+ | \varphi_{n} = | ||
+ | \begin{cases} | ||
+ | \pi, n>0,\\ | ||
+ | 0, n<0. | ||
+ | \end{cases} | ||
+ | </math></center> | ||
+ | |||
[[Category:Infinite Array]] | [[Category:Infinite Array]] |
Revision as of 14:36, 18 July 2006
Introduction
We want to use the Kagemoto and Yue Interaction Theory to derive a system of equations for the infinite array.
System of equations
We start with the final system of equations of the Kagemoto and Yue Interaction Theory, namely
[math]\displaystyle{ m \in \mathbb{N} }[/math], [math]\displaystyle{ \mu \in \mathbb{Z} }[/math], [math]\displaystyle{ l=1,\dots,N }[/math].
For the infinite array, some simplifications of this system can be made. First of all, the bodies are aligned in an evenly spaced array. Denoting the spacing by [math]\displaystyle{ R }[/math], we have [math]\displaystyle{ R_{jl} = \abs{j-l} R }[/math] and