Difference between revisions of "Interaction Theory for Infinite Arrays"
Line 40: | Line 40: | ||
\Big[ \tilde{D}_{n\nu} + (-1)^\nu | \Big[ \tilde{D}_{n\nu} + (-1)^\nu | ||
\sum_{\tau = -\infty}^{\infty} A_{n\tau} \sum_{j=-\infty,j \neq l}^{\infty} P_{j-l} K_{\tau - \nu} (k_n | \sum_{\tau = -\infty}^{\infty} A_{n\tau} \sum_{j=-\infty,j \neq l}^{\infty} P_{j-l} K_{\tau - \nu} (k_n | ||
− | + | |j-l|R) \mathrm{e}^{\mathrm{i}(\tau -\nu) \varphi_{j-l}} \Big], | |
</math></center> | </math></center> | ||
<math>m \in \mathbb{N}</math>, <math>\mu,l \in \mathbb{Z}</math>. | <math>m \in \mathbb{N}</math>, <math>\mu,l \in \mathbb{Z}</math>. | ||
+ | |||
+ | Introducing the constants | ||
+ | |||
+ | <center><math> | ||
+ | \sigma^n_\nu = \sum_{j=-\infty,j \neq l}^{\infty} P_{j-l} K_\nu(k_n|j-l|R) \mathrm{e}^{\mathrm{i}\nu \varphi_{j-l}} = \sum_{j=1}^{\infty} (P_{-j} + (-1)^\nu P_j) K_\nu(k_njR), | ||
+ | </math></center> | ||
+ | |||
+ | which can be evaluated separately since they do not contain any unknowns, the problem reduces to | ||
+ | |||
+ | <center><math> | ||
+ | A_{m\mu} = \sum_{n=0}^{\infty} | ||
+ | \sum_{\nu = -\infty}^{\infty} B_{mn\mu\nu} Big[ \tilde{D}_{n\nu} + (-1)^\nu | ||
+ | \sum_{\tau = -\infty}^{\infty} A_{n\tau} \sigma^n_{\tau-\nu} \Big]. | ||
+ | </math></center> | ||
+ | |||
[[Category:Infinite Array]] | [[Category:Infinite Array]] |
Revision as of 14:49, 18 July 2006
Introduction
We want to use the Kagemoto and Yue Interaction Theory to derive a system of equations for the infinite array.
System of equations
We start with the final system of equations of the Kagemoto and Yue Interaction Theory, namely
[math]\displaystyle{ m \in \mathbb{N} }[/math], [math]\displaystyle{ \mu \in \mathbb{Z} }[/math], [math]\displaystyle{ l=1,\dots,N }[/math].
For the infinite array, some simplifications of this system can be made. First of all, the bodies are aligned in an evenly spaced array. Denoting the spacing by [math]\displaystyle{ R }[/math], we have [math]\displaystyle{ R_{jl} = |j-l| R }[/math] and
Moreover, owing to the periodicity of the array as well as the ambient wave, the coefficients [math]\displaystyle{ A_{m\mu}^l }[/math] can be written as [math]\displaystyle{ A_{m\mu}^l = P_l A_{m\mu}^0 = P_l A_{m\mu} }[/math], where the phase factor [math]\displaystyle{ P_l }[/math] is given by
where [math]\displaystyle{ \chi }[/math] is the angle which the direction of the ambient waves makes with the [math]\displaystyle{ x }[/math]-axis. The same can be done for the coefficients of the ambient wave, i.e. [math]\displaystyle{ \tilde{D}_{n\nu}^{l} = P_l \tilde{D}_{n\nu} }[/math].
Therefore, the system simplifies to
[math]\displaystyle{ m \in \mathbb{N} }[/math], [math]\displaystyle{ \mu,l \in \mathbb{Z} }[/math].
Introducing the constants
which can be evaluated separately since they do not contain any unknowns, the problem reduces to