Difference between revisions of "Green Function Methods for Floating Elastic Plates"
Line 6: | Line 6: | ||
The closest solution to the one presented here was derived by [[Hermans04]], based on an earlier | The closest solution to the one presented here was derived by [[Hermans04]], based on an earlier | ||
− | solution for a single plate [[ | + | solution for a single plate [[Hermans 2003]]. This solution was for a set of finite elastic plates of |
arbitrary properties. That problem differed from the one presented here, only by requiring that the semi-infinite | arbitrary properties. That problem differed from the one presented here, only by requiring that the semi-infinite | ||
regions are open water. | regions are open water. | ||
− | The solution method presented in [[ | + | The solution method presented in [[Hermans 2004]] was quite different from the one presented here, and it was |
− | based on using the free-surface Green function. | + | based on using the free-surface Green function. |
= Equations of Motion = | = Equations of Motion = |
Revision as of 09:04, 13 December 2006
Introduction
The problem of a two-dimensional Floating Elastic Plate was solved using a Free-Surface Green Function by Newman 1994 and Meylan and Squire 1994. We describe here both methods (which are closely related).
The closest solution to the one presented here was derived by Hermans04, based on an earlier solution for a single plate Hermans 2003. This solution was for a set of finite elastic plates of arbitrary properties. That problem differed from the one presented here, only by requiring that the semi-infinite regions are open water. The solution method presented in Hermans 2004 was quite different from the one presented here, and it was based on using the free-surface Green function.
Equations of Motion
We begin with the equations of motion in non-dimensional form for a single Floating Elastic Plate which occupies the region [math]\displaystyle{ -b\leq\lt x\lt \leq b }[/math]
where [math]\displaystyle{ \alpha = \omega^2 }[/math] and