Difference between revisions of "Wave Energy Density and Flux"
Line 51: | Line 51: | ||
Hence: | Hence: | ||
− | <center><math> \overline{\varepsilon} = \overline{\varepsilon_{kin}} + \overline{\ | + | <center><math> \overline{\varepsilon} = \overline{\varepsilon_{kin}} + \overline{\varepsilon_{pot}} = \frac{1}{2} \rho g A^2 </math></center> |
Line 58: | Line 58: | ||
<center><math> P(t) \equiv \frac{d\varepsilon(t)}{dt} , \ \varepsilon = \iiint_V(t) (\frac{1}{2} \rho V^2 +gZ ) d </math></center> | <center><math> P(t) \equiv \frac{d\varepsilon(t)}{dt} , \ \varepsilon = \iiint_V(t) (\frac{1}{2} \rho V^2 +gZ ) d </math></center> | ||
− | <center><math> P(t) = \frac{d\varepsilon(t)}{dt} = \frac{d}{dt} \iiint_V(t) \epsilon(t) dV = \ | + | <center><math> P(t) = \frac{d \varepsilon(t)}{dt} = \frac{d}{dt} \iiint_V(t) \epsilon(t) dV = \iint_S(t) \frac{\partial \epsilon(t)}{\partial t} dV + \iint_S(t) \epsilon(t) U_n dS </math></center> |
Transport theorem where <math> U_n </math> is normal velocity of surface <math> S(t) </math> outwards of the enclosed volume <math> V </math>. | Transport theorem where <math> U_n </math> is normal velocity of surface <math> S(t) </math> outwards of the enclosed volume <math> V </math>. | ||
− | <center><math> \frac{\partial \epsilon}{\partial t} = \frac{\partial}{\partial t} \{ \frac{1}{2} \rho | + | <center><math> \frac{\partial \epsilon}{\partial t} = \frac{\partial}{\partial t} \{ \frac{1}{2} \rho V^2 + \rho g Z \} = \frac{1}{2} \rho \frac{\partial}{\partial t} ( \nabla\Phi \cdot \nabla\Phi) </math></center> |
<center><math> = \rho \nabla \cdot \left( \frac{\partial\Phi}{\partial t} \nabla\Phi \right) - \rho \frac{\partial\Phi}{\partial t} \nabla^2 \Phi </math></center> | <center><math> = \rho \nabla \cdot \left( \frac{\partial\Phi}{\partial t} \nabla\Phi \right) - \rho \frac{\partial\Phi}{\partial t} \nabla^2 \Phi </math></center> |
Revision as of 04:57, 1 February 2007
Energy Density, Energy Flux and Momentum Flux of Surface Waves
[math]\displaystyle{ \varepsilon(t) = \ \mbox{Energy in control volume} \ \gamma(t) }[/math] :
Mean energy over unit horizongtal surface area [math]\displaystyle{ S \, }[/math] :
where [math]\displaystyle{ \zeta(t) \, }[/math] is free surface elevation.
Ignore term [math]\displaystyle{ -\frac{1}{2} \rho g H^2 \, }[/math] which represents the potential energy of the ocean at rest.
The remaining perturbation component is the sum of the kinetic and potential energy components
Consider now as a special case plane progressive waves defined by the velocity potential in deep water (for simplicity):
Lemma
Let:
[math]\displaystyle{ \overline{\varepsilon_{pot}} = \frac{1}{2} \rho g {\overline{\zeta(t)}}^2 = \frac{1}{4} \rho g A^2 }[/math]
Hence:
Energy flux = rate of change of energy density [math]\displaystyle{ \varepsilon(t) }[/math]
Transport theorem where [math]\displaystyle{ U_n }[/math] is normal velocity of surface [math]\displaystyle{ S(t) }[/math] outwards of the enclosed volume [math]\displaystyle{ V }[/math].