Difference between revisions of "Wave Energy Density and Flux"

From WikiWaves
Jump to navigationJump to search
Line 51: Line 51:
 
Hence:
 
Hence:
  
<center><math> \overline{\varepsilon} = \overline{\varepsilon_{kin}} + \overline{\varepsilon}_{pot}} = \frac{1}{2} \rho g A^2 </math></center>
+
<center><math> \overline{\varepsilon} = \overline{\varepsilon_{kin}} + \overline{\varepsilon_{pot}} = \frac{1}{2} \rho g A^2 </math></center>
  
  
Line 58: Line 58:
 
<center><math> P(t) \equiv \frac{d\varepsilon(t)}{dt} , \ \varepsilon = \iiint_V(t) (\frac{1}{2} \rho V^2 +gZ ) d </math></center>
 
<center><math> P(t) \equiv \frac{d\varepsilon(t)}{dt} , \ \varepsilon = \iiint_V(t) (\frac{1}{2} \rho V^2 +gZ ) d </math></center>
  
<center><math> P(t) = \frac{d\varepsilon(t)}{dt} = \frac{d}{dt} \iiint_V(t) \epsilon(t) dV = \oiint_S(t) \frac{\partial \epsilon(t)}{\partial t) dV + \oiint_S(t) \epsilon(t) U_n dS </math></center>
+
<center><math> P(t) = \frac{d \varepsilon(t)}{dt} = \frac{d}{dt} \iiint_V(t) \epsilon(t) dV = \iint_S(t) \frac{\partial \epsilon(t)}{\partial t} dV + \iint_S(t) \epsilon(t) U_n dS </math></center>  
  
 
Transport theorem where <math> U_n </math> is normal velocity of surface <math> S(t) </math> outwards of the enclosed volume <math> V </math>.
 
Transport theorem where <math> U_n </math> is normal velocity of surface <math> S(t) </math> outwards of the enclosed volume <math> V </math>.
  
<center><math> \frac{\partial \epsilon}{\partial t} = \frac{\partial}{\partial t} \{ \frac{1}{2} \rho \V^2 + \rho g Z \} = \frac{1}{2} \rho \frac{\partial}{\partial t} ( \nabla\Phi \cdot \nabla\Phi) </math></center>
+
<center><math> \frac{\partial \epsilon}{\partial t} = \frac{\partial}{\partial t} \{ \frac{1}{2} \rho V^2 + \rho g Z \} = \frac{1}{2} \rho \frac{\partial}{\partial t} ( \nabla\Phi \cdot \nabla\Phi) </math></center>
  
 
<center><math> = \rho \nabla \cdot \left( \frac{\partial\Phi}{\partial t} \nabla\Phi \right) - \rho \frac{\partial\Phi}{\partial t} \nabla^2 \Phi </math></center>
 
<center><math> = \rho \nabla \cdot \left( \frac{\partial\Phi}{\partial t} \nabla\Phi \right) - \rho \frac{\partial\Phi}{\partial t} \nabla^2 \Phi </math></center>

Revision as of 04:57, 1 February 2007

Energy Density, Energy Flux and Momentum Flux of Surface Waves

[math]\displaystyle{ \varepsilon(t) = \ \mbox{Energy in control volume} \ \gamma(t) }[/math] :

[math]\displaystyle{ \varepsilon (t) = \rho \iiint_V \left( \frac{1}{2} V^2 + gZ \right) dV }[/math]

Mean energy over unit horizongtal surface area [math]\displaystyle{ S \, }[/math] :

[math]\displaystyle{ \overline{\varepsilon} = \overline{\frac{\varepsilon(t)}{S}} = \rho \overline{ \int_{-H}^{\zeta(t)} \left( \frac{1}{2} V^2 + gZ \right) dZ} = \frac{1}{2} \rho \overline{ \int_{-H}^{\zeta(t)} V^2 dZ} + \overline{ \frac{1}{2} \rho g ( \zeta^2 - H^2 ) } }[/math]

where [math]\displaystyle{ \zeta(t) \, }[/math] is free surface elevation.

Ignore term [math]\displaystyle{ -\frac{1}{2} \rho g H^2 \, }[/math] which represents the potential energy of the ocean at rest.

The remaining perturbation component is the sum of the kinetic and potential energy components

[math]\displaystyle{ \overline{\varepsilon} = \overline{\varepsilon_{kin}} + \overline{\varepsilon_{pot}} }[/math]
[math]\displaystyle{ \overline{\varepsilon_{kin}} = \frac{1}{2} \rho \overline{\int_{-H}^{\zeta(t)} V^2 dZ}, \qquad V^2 = \nabla\Phi \cdot \nabla \Phi = \Phi_X^2 + \Phi_Z^2 }[/math]
[math]\displaystyle{ \overline{\varepsilon_{pot}} = \overline{\frac{1}{2} \rho g \zeta^2 (t)} }[/math]

Consider now as a special case plane progressive waves defined by the velocity potential in deep water (for simplicity):

[math]\displaystyle{ \Phi = \mathbf{Re} \{ \frac{igA}{\omega} e^{KZ-iKX+i\omega t} \} }[/math]
[math]\displaystyle{ \Phi_X = \mathbf{Re} \{ \frac{igA}{\omega} (-iK) e^{KZ-iKX+i\omega t} \} }[/math]


[math]\displaystyle{ = A \mathbf{Re} \{ \omega e^{KZ-iKX+i\omega t} \} }[/math]
[math]\displaystyle{ \Phi_Z = \mathbf{Re} \{ \frac{iSA}{\omega} K e^{KZ-iKX+i\omega t} \} }[/math]


[math]\displaystyle{ = A \mathbf{Re} \{ i \omega e^{KZ-iKX+i\omega t} \} }[/math]

Lemma

Let:

[math]\displaystyle{ \mathbf{Re} \{ A e^{i\omega t} \} = A(t) }[/math]
[math]\displaystyle{ \mathbf{Re} \{ B e^{i\omega t} \} = B(t) }[/math]
[math]\displaystyle{ \overline{A(t)B(t)} = \frac{1}{2} \mathbf{Re} \{ A B^* \} }[/math]
[math]\displaystyle{ \overline{\epsilon_{kin}} = \frac{1}{2} \rho \overline{ ( \int_{-\infty}^0 + \int_0^\zeta ) \left( \Phi_X^2 + \Phi_Z^2 \right) } dZ }[/math]
[math]\displaystyle{ = \frac{1}{2} \rho \int_{-\infty}^0 \left( \Phi_X^2 + \Phi_Z^2 \right) dZ + O (A^3) }[/math]
[math]\displaystyle{ = \rho \frac{\omega^2 A^2}{4K} = \frac{1}{4} \rho g A^2 , \qquad \mbox{for} \ K=\omega^2/g }[/math]

[math]\displaystyle{ \overline{\varepsilon_{pot}} = \frac{1}{2} \rho g {\overline{\zeta(t)}}^2 = \frac{1}{4} \rho g A^2 }[/math]

Hence:

[math]\displaystyle{ \overline{\varepsilon} = \overline{\varepsilon_{kin}} + \overline{\varepsilon_{pot}} = \frac{1}{2} \rho g A^2 }[/math]


Energy flux = rate of change of energy density [math]\displaystyle{ \varepsilon(t) }[/math]

[math]\displaystyle{ P(t) \equiv \frac{d\varepsilon(t)}{dt} , \ \varepsilon = \iiint_V(t) (\frac{1}{2} \rho V^2 +gZ ) d }[/math]
[math]\displaystyle{ P(t) = \frac{d \varepsilon(t)}{dt} = \frac{d}{dt} \iiint_V(t) \epsilon(t) dV = \iint_S(t) \frac{\partial \epsilon(t)}{\partial t} dV + \iint_S(t) \epsilon(t) U_n dS }[/math]

Transport theorem where [math]\displaystyle{ U_n }[/math] is normal velocity of surface [math]\displaystyle{ S(t) }[/math] outwards of the enclosed volume [math]\displaystyle{ V }[/math].

[math]\displaystyle{ \frac{\partial \epsilon}{\partial t} = \frac{\partial}{\partial t} \{ \frac{1}{2} \rho V^2 + \rho g Z \} = \frac{1}{2} \rho \frac{\partial}{\partial t} ( \nabla\Phi \cdot \nabla\Phi) }[/math]
[math]\displaystyle{ = \rho \nabla \cdot \left( \frac{\partial\Phi}{\partial t} \nabla\Phi \right) - \rho \frac{\partial\Phi}{\partial t} \nabla^2 \Phi }[/math]