Difference between revisions of "Wave Energy Density and Flux"
Line 67: | Line 67: | ||
<center><math> P(t) = \frac{d \varepsilon(t)}{dt} = \rho \iiint_V(t) \nabla \cdot \left( \frac{\partial \Phi}{\partial t} \nabla \Phi \right) dV + \rho \iint_S(t) \left( \frac{1}{2} V^2 + gZ \right) U_n dS </math></center> | <center><math> P(t) = \frac{d \varepsilon(t)}{dt} = \rho \iiint_V(t) \nabla \cdot \left( \frac{\partial \Phi}{\partial t} \nabla \Phi \right) dV + \rho \iint_S(t) \left( \frac{1}{2} V^2 + gZ \right) U_n dS </math></center> | ||
+ | |||
+ | Invoking the scalar form of Gauss's theorem in the frist term, we obtain: | ||
+ | |||
+ | <u> <center><math> P(t) = \rho \iint \frac{\partial\Phi}{\partial t} \nabla \Phi \dot \vec n ds + \rho \iint \left( \frac{1}{2} V^2 + gZ \right) U_n ds </math></center> | ||
+ | |||
+ | An alternative form for the energy flux <math> P(t) \, </math> crossing the closed control surface <math> S(t) \, </math> is obtained by invoking Bernoulli's equation in the second term. Recall that: | ||
+ | |||
+ | <center><math> \frac{P-P_a}{\rho} + \frac{\partial\Phi}{\partial t} + \frac{1}{2} \nabla\Phi \dot \nabla\Phi + gZ = 0 </math></center> | ||
+ | |||
+ | At any point in the fluid domain and on boundarie. | ||
+ | |||
+ | Here we did allow <math> \ P_a \equiv \mbox{Atmospheric pressure \ </math> to be non-zero for the sake of physical clarity. Upon substitution in <math> P(t) </math> we obtain the alternate form: | ||
+ | |||
+ | <center><math> P(t) = \rho \iint \frac{\partial\Phi}{\partial t} \frac{\partial\Phi}{\partial n} ds - \rho \iint \left( \frac{P-P_a}{\rho} + \frac{\partial\Phi}{\partial t} \right) U_n ds </math></center> | ||
+ | |||
+ | So the energy flux across <math> S(t)\, </math> is given by the terms under the interral sign. They can be collected in the more compact form: |
Revision as of 11:06, 14 February 2007
Energy Density, Energy Flux and Momentum Flux of Surface Waves
[math]\displaystyle{ \varepsilon(t) = \ \mbox{Energy in control volume} \ \gamma(t) }[/math] :
Mean energy over unit horizongtal surface area [math]\displaystyle{ S \, }[/math] :
where [math]\displaystyle{ \zeta(t) \, }[/math] is free surface elevation.
Ignore term [math]\displaystyle{ -\frac{1}{2} \rho g H^2 \, }[/math] which represents the potential energy of the ocean at rest.
The remaining perturbation component is the sum of the kinetic and potential energy components
Consider now as a special case plane progressive waves defined by the velocity potential in deep water (for simplicity):
Lemma
Let:
[math]\displaystyle{ \overline{\varepsilon_{pot}} = \frac{1}{2} \rho g {\overline{\zeta(t)}}^2 = \frac{1}{4} \rho g A^2 }[/math]
Hence:
Energy flux = rate of change of energy density [math]\displaystyle{ \varepsilon(t) }[/math]
Transport theorem where [math]\displaystyle{ U_n }[/math] is normal velocity of surface [math]\displaystyle{ S(t) }[/math] outwards of the enclosed volume [math]\displaystyle{ V }[/math].
Invoking the scalar form of Gauss's theorem in the frist term, we obtain:
An alternative form for the energy flux [math]\displaystyle{ P(t) \, }[/math] crossing the closed control surface [math]\displaystyle{ S(t) \, }[/math] is obtained by invoking Bernoulli's equation in the second term. Recall that:
At any point in the fluid domain and on boundarie.
Here we did allow [math]\displaystyle{ \ P_a \equiv \mbox{Atmospheric pressure \ }[/math] to be non-zero for the sake of physical clarity. Upon substitution in [math]\displaystyle{ P(t) }[/math] we obtain the alternate form:
So the energy flux across [math]\displaystyle{ S(t)\, }[/math] is given by the terms under the interral sign. They can be collected in the more compact form: