Difference between revisions of "Long Wavelength Approximations"
Line 1: | Line 1: | ||
− | Analytical solutions of the wave-body problem formulated above are | + | Analytical solutions of the wave-body problem formulated above are rare. The few exceptions which find frequent use in practice are: |
− | rare. The few exceptions which find frequent use in practice are: | ||
* Wavemaker theory (Studied) | * Wavemaker theory (Studied) | ||
Line 10: | Line 9: | ||
<u>Long-wavelength approximations</u> | <u>Long-wavelength approximations</u> | ||
− | very frequently the length of ambient waves <math> \lambda \,</math> | + | very frequently the length of ambient waves <math> \lambda \,</math> is large compared to the dimension of floating bodies. |
− | is large compared to the dimension of floating bodies. | ||
− | For example the length of a wave with period <math> T=10 \ | + | For example the length of a wave with period <math> T=10 \ \mbox{sec}\,</math> is <math> \lambda \simeq T^2 + \frac{T^2}{2} \simeq 150m \,</math>. The beam of a ship with length <math> L=100m\,</math> can be <math>20m\,</math> as is the case for the diameter of the leg of an offshore platform. |
− | \mbox{sec}\,</math> is <math> \lambda \simeq T^2 + \frac{T^2}{2} | ||
− | \simeq 150m \,</math>. The beam of a ship with length <math> | ||
− | L=100m\,</math> can be <math>20m\,</math> as is the case for the | ||
− | diameter of the leg of an offshore platform. | ||
<u>GI Taylor's formula</u> | <u>GI Taylor's formula</u> | ||
− | <math> U(X,t):\ \mbox{Velocity of ambient unidirectional flow | + | <math> U(X,t):\ \mbox{Velocity of ambient unidirectional flow \,</math> |
− | \,</math> | ||
<math> P(X,t):\ \mbox{Pressure corresponding to} \ U(X,t) \,</math> | <math> P(X,t):\ \mbox{Pressure corresponding to} \ U(X,t) \,</math> | ||
− | <center><math> \lambda \sim \frac{|U|}{|\nabla U|} \gg B \ = \ | + | <center><math> \lambda \sim \frac{|U|}{|\nabla U|} \gg B \ = \ \mbox{Body characteristic dimension} \,</math></center> |
− | \mbox{Body characteristic dimension} \,</math></center> | ||
* In the absence of viscous effects and to leading order for <math> | * In the absence of viscous effects and to leading order for <math> | ||
\ lambda \gg B \,</math>: | \ lambda \gg B \,</math>: | ||
− | <center><math> F_X = - \left( \forall + \frac{A_{11}}{\rho} \right) | + | <center><math> F_X = - \left( \forall + \frac{A_{11}}{\rho} \right) \left. \frac{\partial P}{\partial x} \right|^{X=0} </math></center> |
− | \left. \frac{\partial P}{\partial x} \right|^{X=0} </math></center> | ||
− | <center><math> \bullet \ F_X: \ \mbox{Force in X-direction} | + | <center><math> \bullet \ F_X: \ \mbox{Force in X-direction} \,</math></center> |
− | \,</math></center> | ||
− | <center><math> \bullet \ \forall: \ \mbox{Body | + | <center><math> \bullet \ \forall: \ \mbox{Body displacement}\,</math></center> |
− | displacement}\,</math></center> | ||
− | <center><math> \bullet \ \A_{11}: \ \mbox{Surge added mass} | + | <center><math> \bullet \ \A_{11}: \ \mbox{Surge added mass} \,</math></center> |
− | \,</math></center> | ||
− | An alternative form of GI Taylor's formula for a fixed body follows | + | An alternative form of GI Taylor's formula for a fixed body follows from Euler's equations: |
− | from Euler's equations: | ||
− | <center><math> \frac{\partial U}{\partial t} + U \frac{\partial | + | <center><math> \frac{\partial U}{\partial t} + U \frac{\partial U}{\partial X} \simeq - \frac{1}{\rho} \frac{\partial P}{\partial X} </math></center> |
− | U}{\partial X} \simeq - \frac{1}{\rho} \frac{\partial P}{\partial X} | ||
− | </math></center> | ||
Thus: | Thus: | ||
− | <center><math> F_X = \left( \rho \forall + A_{11} \right) + \left( | + | <center><math> F_X = \left( \rho \forall + A_{11} \right) + \left( \frac{\partial U}{\partial t} + U \frac{\partial U}{\partial X} \right)_{X=0} </math></center> |
− | \frac{\partial U}{\partial t} + U \frac{\partial U}{\partial X} | ||
− | \right)_{X=0} </math></center> | ||
− | If the body is also translating in the X-direction with displacement | + | If the body is also translating in the X-direction with displacement <math>X_1(t)\,</math> then the total force becomes |
− | <math>X_1(t)\,</math> then the total force becomes | ||
− | <center><math> \bullet \ F_X = \left( \rho\forall+A_{11} \right) | + | <center><math> \bullet \ F_X = \left( \rho\forall+A_{11} \right) \left( \frac{\partial U}{\partial t} + U \frac{\partial U}{\partial X} \right) - A_{11} \frac{d^2X_1(t)}{dt^2} </math></center> |
− | \left( \frac{\partial U}{\partial t} + U \frac{\partial U}{\partial | ||
− | X} \right) - A_{11} \frac{d^2X_1(t)}{dt^2} </math></center> | ||
− | Often, when the ambient velocity <math> U\,</math> is arising from | + | Often, when the ambient velocity <math> U\,</math> is arising from plane progressive waves, <math> \left| U \frac{\partial U}{\partial X} \right| = 0(A^2) \,</math> and is omitted. Note that <math> U\,</math> does not include disturbance effects due to the body. |
− | plane progressive waves, <math> \left| U \frac{\partial U}{\partial | ||
− | X} \right| = 0(A^2) \,</math> and is omitted. Note that <math> | ||
− | U\,</math> does not include disturbance effects due to the body. | ||
* Applications of GI Taylor's formula in wave-body interactions | * Applications of GI Taylor's formula in wave-body interactions | ||
Line 73: | Line 50: | ||
A) <u>Archimedean hydrostatics</u> | A) <u>Archimedean hydrostatics</u> | ||
− | <center><math> P=-\rho g Z, \quad \frac{\partial P}{\partial Z} = - | + | <center><math> P=-\rho g Z, \quad \frac{\partial P}{\partial Z} = - \rho g \,</math></center> |
− | \rho g \,</math></center> | ||
− | <center><math> F_Z = - ( \forall + \phi ) \frac{\partial P}{\partial | + | <center><math> F_Z = - ( \forall + \phi ) \frac{\partial P}{\partial Z} = \rho g \forall </math></center> |
− | Z} = \rho g \forall </math></center> | ||
− | <center><math> \phi: \ \mbox{no added mass since there is no flow} | + | <center><math> \phi: \ \mbox{no added mass since there is no flow} </math></center> |
− | </math></center> | ||
* So Archimedes' formula is a special case of GI Taylor when there | * So Archimedes' formula is a special case of GI Taylor when there | ||
− | is no flow. This offers an intuitive meaning to the term that | + | is no flow. This offers an intuitive meaning to the term that includes the body displacement. |
− | includes the body displacement. | ||
B) Regular waves over a circle fixed under the free surface | B) Regular waves over a circle fixed under the free surface | ||
− | <center><math> \Phi_I = \mathfrak{Re} \left\{ \frac{i g A}{\omega} | + | <center><math> \Phi_I = \mathfrak{Re} \left\{ \frac{i g A}{\omega} e^{KZ-iKX+i\omega t} \right\}, \quad K=\frac{\omega^2}{g} \, </math></center> |
− | e^{KZ-iKX+i\omega t} \right\}, \quad K=\frac{\omega^2}{g} \, | ||
− | </math></center> | ||
− | <center><math>u=\frac{\partial \Phi_I}{\partial X} = \mathfrak{Re} | + | <center><math>u=\frac{\partial \Phi_I}{\partial X} = \mathfrak{Re} \left\{ \frac{i g A}{\omega} (-i K) e^{K Z - i K X + i \omega t } \right \} </math></center> |
− | \left\{ \frac{i g A}{\omega} (-i K) e^{K Z - i K X + i \omega t } | ||
− | \right \} </math></center> | ||
− | <center><math> \mathfrak{Re} \left\{ \omega A e^{ - K d +i \omega t} | + | <center><math> \mathfrak{Re} \left\{ \omega A e^{ - K d +i \omega t} \right\}_{X=0,Z=-d} </math></center> |
− | \right\}_{X=0,Z=-d} </math></center> | ||
So the horizontal force on the circle is: | So the horizontal force on the circle is: | ||
− | <center><math>F_X = \left( \forall + \frac{a_{11}{\rho} \right) | + | <center><math>F_X = \left( \forall + \frac{a_{11}{\rho} \right) \frac{\partial u}{\partial t} + O \left( Z^2 \right) </math></center> |
− | \frac{\partial u}{\partial t} + O \left( Z^2 \right) | ||
− | </math></center> | ||
− | <center><math> \forall =\pi a^2, \quad a_{11} = \pi \rho a^2 | + | <center><math> \forall =\pi a^2, \quad a_{11} = \pi \rho a^2 \,</math></center> |
− | \,</math></center> | ||
− | <center><math> \frac{\partial u}{\partial t} = \mathfrak{Re} \left\{ | + | <center><math> \frac{\partial u}{\partial t} = \mathfrak{Re} \left\{ i\omega^2 e^{-K d + i \omega t} \right\} </math></center> |
− | i\omega^2 e^{-K d + i \omega t} \right\} </math></center> | ||
Thus: | Thus: | ||
− | <center><math> F_X = - 2 \pi a^2 \omega^2 A e^{-K d} \sin \omega t | + | <center><math> F_X = - 2 \pi a^2 \omega^2 A e^{-K d} \sin \omega t \,</math></center> |
− | \,</math></center> | ||
− | * Derive the vertical force along very similar lines. It is simply | + | * Derive the vertical force along very similar lines. It is simply <math>90^\circ\,</math> out of phase relative to <math>F_X\,</math> with the same modulus. |
− | <math>90^\circ\,</math> out of phase relative to <math>F_X\,</math> | ||
− | with the same modulus. | ||
− | C) Horizontal force on a fixed circular cylinder of draft | + | C) Horizontal force on a fixed circular cylinder of draft <math>T\,</math>: |
− | <math>T\,</math>: | ||
− | This case arises frequently in wave interactions with floating | + | This case arises frequently in wave interactions with floating offshore platforms. |
− | offshore platforms. | ||
− | Here we will evaluate <math> \frac{\partial u}{\partial t} \,</math> | + | Here we will evaluate <math> \frac{\partial u}{\partial t} \,</math> on the axis of the platform and use a strip wise integration to evaluate the total hydrodynamic force. |
− | on the axis of the platform and use a strip wise integration to | ||
− | evaluate the total hydrodynamic force. | ||
− | <center><math> u = \frac{\partial \Phi}{\partial X} = \mathfrak{Re} | + | <center><math> u = \frac{\partial \Phi}{\partial X} = \mathfrak{Re} \left\{ \frac{i g A}{\omega} (- i K) e^{KZ-i K X + i\omega t} \right\} </math></center> |
− | \left\{ \frac{i g A}{\omega} (- i K) e^{KZ-i K X + i\omega t} | ||
− | \right\} </math></center> | ||
− | <center><math> = \mathfrak{Re} \left\{ \omega A e^{KZ+i\omega t} | + | <center><math> = \mathfrak{Re} \left\{ \omega A e^{KZ+i\omega t} \right\}_{X=0} \,</math></center> |
− | \right\}_{X=0} \,</math></center> | ||
− | <center><math> \frac{\partial u}{\partial t} (Z) = \mathfrak{Re} | + | <center><math> \frac{\partial u}{\partial t} (Z) = \mathfrak{Re} \left\{ \omega A ( i \omega) e^{KZ+i\omega t} \right\} </math></center> |
− | \left\{ \omega A ( i \omega) e^{KZ+i\omega t} \right\} | ||
− | </math></center> | ||
− | <center><math> = - \omega^2 A e^{KZ} \sin \omega t | + | <center><math> = - \omega^2 A e^{KZ} \sin \omega t \,</math></center> |
− | \,</math></center> | ||
− | The differential horizontal force over a strip <math> d Z \,</math> | + | The differential horizontal force over a strip <math> d Z \,</math> at a depth <math> Z \,</math> becomes: |
− | at a depth <math> Z \,</math> becomes: | ||
− | <center><math> dF_Z = \rho ( \forall + a_{11} ) \frac{\partial | + | <center><math> dF_Z = \rho ( \forall + a_{11} ) \frac{\partial u}{\partial t} d Z \,</math></center> |
− | u}{\partial t} d Z \,</math></center> | ||
− | <center><math> \rho ( \pi a^2 + \pi a^2 ) \frac{\partial u}{\partial | + | <center><math> \rho ( \pi a^2 + \pi a^2 ) \frac{\partial u}{\partial t} d Z \,</math></center> |
− | t} d Z \,</math></center> | ||
− | <center><math> 2 \pi \rho a^2 \left( - \omega^2 A e^{KZ} \right) | + | <center><math> 2 \pi \rho a^2 \left( - \omega^2 A e^{KZ} \right) \sin \omega t d Z </math></center> |
− | \sin \omega t d Z </math></center> | ||
− | The total horizontal force over a truncated cylinder of draft | + | The total horizontal force over a truncated cylinder of draft <math>T\,</math> becomes: |
− | <math>T\,</math> becomes: | ||
− | <center><math> F_X = \int_{-T}^{0} dZ dF = -2\pi\rho a^2 \omega^2 A | + | <center><math> F_X = \int_{-T}^{0} dZ dF = -2\pi\rho a^2 \omega^2 A \sin \omega t \int_{-T}^0 e^{KZ} dZ </math></center> |
− | \sin \omega t \int_{-T}^0 e^{KZ} dZ </math></center> | ||
− | <center><math> X_1 \equiv F_X = - 2 \pi \rho a^2 \omega^2 A \sin | + | <center><math> X_1 \equiv F_X = - 2 \pi \rho a^2 \omega^2 A \sin \omega t \cdot \frac{1-e^{-KT}}{K} </math></center> |
− | \omega t \cdot \frac{1-e^{-KT}}{K} </math></center> | ||
* This is a very useful and practical result. It provides an | * This is a very useful and practical result. It provides an | ||
− | estimate of the surge exciting force on one leg of a possibly | + | estimate of the surge exciting force on one leg of a possibly multi-leg platform |
− | multi-leg platform | ||
* As <math> T \to \infty; \quad \frac{1-e^{-KT}{K} \to \frac{1}{K} | * As <math> T \to \infty; \quad \frac{1-e^{-KT}{K} \to \frac{1}{K} | ||
\,</math> | \,</math> | ||
− | D) Horizontal force on multiple vertical cylinders in any | + | D) Horizontal force on multiple vertical cylinders in any arrangement: |
− | arrangement: | ||
− | The proof is essentially based on a phasing argument. Relative to | + | The proof is essentially based on a phasing argument. Relative to the reference frame: |
− | the reference frame: | ||
− | <center><math> \Phi_I = \mathfrak{Re} \left\{ \frac{i g A}{\omega} | + | <center><math> \Phi_I = \mathfrak{Re} \left\{ \frac{i g A}{\omega} e^{KZ-iKX + i\omega t} \right\} \,</math></center> |
− | e^{KZ-iKX + i\omega t} \right\} \,</math></center> | ||
* Express the incident wave relative to the local frames by | * Express the incident wave relative to the local frames by | ||
Line 192: | Line 132: | ||
Then relative to the i-th leg: | Then relative to the i-th leg: | ||
− | <center><math> \Phi_I^{(i)} = \mathfrak{Re} \left\{ \frac{ i g | + | <center><math> \Phi_I^{(i)} = \mathfrak{Re} \left\{ \frac{ i g A}{\omega} e^{KZ - iK\xi_i + i\omega t} \mathbf{P}_i \right\} \quad i=1,\cdots,N </math></center> |
− | A}{\omega} e^{KZ - iK\xi_i + i\omega t} \mathbf{P}_i \right\} \quad | ||
− | i=1,\cdots,N </math></center> | ||
− | Ignoring interactions between legs, which is a good approximation in | + | Ignoring interactions between legs, which is a good approximation in long waves, the total exciting force on an n-cylinder platform is: |
− | long waves, the total exciting force on an n-cylinder platform is: | ||
− | <center><math> \mathbf{X}_1^N = \sum_{i=1}^N \mathbf{P}_i | + | <center><math> \mathbf{X}_1^N = \sum_{i=1}^N \mathbf{P}_i \mathbf{X}_1 \,</math></center> |
− | \mathbf{X}_1 \,</math></center> | ||
− | The above expression gives the complex amplitude of the force with | + | The above expression gives the complex amplitude of the force with <math>\mathbf{X}_1\,</math> given in the single cylinder case. |
− | <math>\mathbf{X}_1\,</math> given in the single cylinder case. | ||
− | * The above technique may be easily extended to estimate the Sway | + | * The above technique may be easily extended to estimate the Sway force and Yaw moment on n-cylinders with little extra effort. |
− | force and Yaw moment on n-cylinders with little extra effort. | ||
E) Surge exciting force on a 2D section | E) Surge exciting force on a 2D section | ||
− | <center><math> \Phi_I = \mathfrac{Re} \left\{ \frac{ i g A}{\omega} | + | <center><math> \Phi_I = \mathfrac{Re} \left\{ \frac{ i g A}{\omega} e^{KZ-iKX+i\omega t} \right\} \,</math></center> |
− | e^{KZ-iKX+i\omega t} \right\} \,</math></center> | ||
− | <center><math> u=\mathfrak{Re} \left\{ \frac{ i g A}{\omega} (- i K | + | <center><math> u=\mathfrak{Re} \left\{ \frac{ i g A}{\omega} (- i K ) e^{KZ-iKX+i\omega t} \right\} \,</math></center> |
− | ) e^{KZ-iKX+i\omega t} \right\} \,</math></center> | ||
− | <center><math> \frac{\partial u}{\partial t} = \mathfrak{Re} \left\{ | + | <center><math> \frac{\partial u}{\partial t} = \mathfrak{Re} \left\{ \frac{ i g A}{\omega} \left(- i \frac{\omega^2}{g} \right) (i\omega) e^{i\omega t} \right\}_{X=0, Z=0} \,</math></center> |
− | \frac{ i g A}{\omega} \left(- i \frac{\omega^2}{g} \right) (i\omega) | ||
− | e^{i\omega t} \right\}_{X=0, Z=0} \,</math></center> | ||
− | <center><math> = \mathfrak{Re} \left\{ i \omega^2 A e^{i\omega t} | + | <center><math> = \mathfrak{Re} \left\{ i \omega^2 A e^{i\omega t} \right\} = -\omega^2 A \sin \omega t \,</math></center> |
− | \right\} = -\omega^2 A \sin \omega t \,</math></center> | ||
− | <center><math> \mathbf{X}_1 = \left( \rho \forall + A_{11} \right) | + | <center><math> \mathbf{X}_1 = \left( \rho \forall + A_{11} \right) \frac{\partial u}{\partial t} = - \omega^2 A \sin \omega t ( \rho \forall + A_{11} ) \, </math></center> |
− | \frac{\partial u}{\partial t} = - \omega^2 A \sin \omega t ( \rho | ||
− | \forall + A_{11} ) \, </math></center> | ||
* If the body section is a circle with radius <math> a\,</math>: | * If the body section is a circle with radius <math> a\,</math>: | ||
− | <center><math> \rho \forall = A_{11} = \pi\rho \frac{a^2}{2} | + | <center><math> \rho \forall = A_{11} = \pi\rho \frac{a^2}{2} \,</math></center> |
− | \,</math></center> | ||
− | So in long waves, the surge exciting force is equally divided | + | So in long waves, the surge exciting force is equally divided between the Froude-Krylov and the diffraction components. This is not the case for Heave! |
− | between the Froude-Krylov and the diffraction components. This is | ||
− | not the case for Heave! | ||
F) Heave exciting force on a surface piercing section | F) Heave exciting force on a surface piercing section | ||
− | In long waves, the leading order effect in the exciting force is the | + | In long waves, the leading order effect in the exciting force is the hydrostatic contribution: |
− | hydrostatic contribution: | ||
<center><math>\mathbf{X}_i \sim \rho g A_w A \,</math></center> | <center><math>\mathbf{X}_i \sim \rho g A_w A \,</math></center> | ||
− | where <math>A_w\,</math> is the body water plane area in 2D or 3D. | + | where <math>A_w\,</math> is the body water plane area in 2D or 3D. <math>A\,</math> is the wave amplitude. This can be shown to be the leading order contribution from the Froude-Krylov force |
− | <math>A\,</math> is the wave amplitude. This can be shown to be the | ||
− | leading order contribution from the Froude-Krylov force | ||
− | <center><math> \mathbf{X}_3^{FK} = \rho g A \iint_{S_B} e^{KZ-iKX} | + | <center><math> \mathbf{X}_3^{FK} = \rho g A \iint_{S_B} e^{KZ-iKX} n_3 dS \,<math></center> |
− | n_3 dS \,<math></center> | ||
Using the Taylor series expansion: | Using the Taylor series expansion: | ||
− | <center><math> e^{KZ-iKX} = 1 + ( KZ - iKX ) + O ( KB )^2 | + | <center><math> e^{KZ-iKX} = 1 + ( KZ - iKX ) + O ( KB )^2 \,</math></center> |
− | \,</math></center> | ||
− | It is easy to verify that: <math>\mathbf{X}_3 \to \rho g A A_w | + | It is easy to verify that: <math>\mathbf{X}_3 \to \rho g A A_w \,</math>. |
− | \,</math>. | ||
− | The scattering contribution is of order <math> KB\,</math>. For | + | The scattering contribution is of order <math> KB\,</math>. For submerged bodies: <math> \mathbf{X}_3^{FK}=O(KB)\,</math>. |
− | submerged bodies: <math> \mathbf{X}_3^{FK}=O(KB)\,</math>. |
Revision as of 10:13, 4 March 2007
Analytical solutions of the wave-body problem formulated above are rare. The few exceptions which find frequent use in practice are:
- Wavemaker theory (Studied)
- Diffraction by a vertical circular cylinder (Studied below)
- Long-wavelength approximations (Studied next)
Long-wavelength approximations
very frequently the length of ambient waves [math]\displaystyle{ \lambda \, }[/math] is large compared to the dimension of floating bodies.
For example the length of a wave with period [math]\displaystyle{ T=10 \ \mbox{sec}\, }[/math] is [math]\displaystyle{ \lambda \simeq T^2 + \frac{T^2}{2} \simeq 150m \, }[/math]. The beam of a ship with length [math]\displaystyle{ L=100m\, }[/math] can be [math]\displaystyle{ 20m\, }[/math] as is the case for the diameter of the leg of an offshore platform.
GI Taylor's formula
[math]\displaystyle{ U(X,t):\ \mbox{Velocity of ambient unidirectional flow \, }[/math]
[math]\displaystyle{ P(X,t):\ \mbox{Pressure corresponding to} \ U(X,t) \, }[/math]
- In the absence of viscous effects and to leading order for [math]\displaystyle{ \ lambda \gg B \, }[/math]:
An alternative form of GI Taylor's formula for a fixed body follows from Euler's equations:
Thus:
If the body is also translating in the X-direction with displacement [math]\displaystyle{ X_1(t)\, }[/math] then the total force becomes
Often, when the ambient velocity [math]\displaystyle{ U\, }[/math] is arising from plane progressive waves, [math]\displaystyle{ \left| U \frac{\partial U}{\partial X} \right| = 0(A^2) \, }[/math] and is omitted. Note that [math]\displaystyle{ U\, }[/math] does not include disturbance effects due to the body.
- Applications of GI Taylor's formula in wave-body interactions
A) Archimedean hydrostatics
- So Archimedes' formula is a special case of GI Taylor when there
is no flow. This offers an intuitive meaning to the term that includes the body displacement.
B) Regular waves over a circle fixed under the free surface
So the horizontal force on the circle is:
Thus:
- Derive the vertical force along very similar lines. It is simply [math]\displaystyle{ 90^\circ\, }[/math] out of phase relative to [math]\displaystyle{ F_X\, }[/math] with the same modulus.
C) Horizontal force on a fixed circular cylinder of draft [math]\displaystyle{ T\, }[/math]:
This case arises frequently in wave interactions with floating offshore platforms.
Here we will evaluate [math]\displaystyle{ \frac{\partial u}{\partial t} \, }[/math] on the axis of the platform and use a strip wise integration to evaluate the total hydrodynamic force.
The differential horizontal force over a strip [math]\displaystyle{ d Z \, }[/math] at a depth [math]\displaystyle{ Z \, }[/math] becomes:
The total horizontal force over a truncated cylinder of draft [math]\displaystyle{ T\, }[/math] becomes:
- This is a very useful and practical result. It provides an
estimate of the surge exciting force on one leg of a possibly multi-leg platform
- As [math]\displaystyle{ T \to \infty; \quad \frac{1-e^{-KT}{K} \to \frac{1}{K} \, }[/math]
D) Horizontal force on multiple vertical cylinders in any arrangement:
The proof is essentially based on a phasing argument. Relative to the reference frame:
- Express the incident wave relative to the local frames by
introducing the phase factors:
Let:
Then relative to the i-th leg:
Ignoring interactions between legs, which is a good approximation in long waves, the total exciting force on an n-cylinder platform is:
The above expression gives the complex amplitude of the force with [math]\displaystyle{ \mathbf{X}_1\, }[/math] given in the single cylinder case.
- The above technique may be easily extended to estimate the Sway force and Yaw moment on n-cylinders with little extra effort.
E) Surge exciting force on a 2D section
- If the body section is a circle with radius [math]\displaystyle{ a\, }[/math]:
So in long waves, the surge exciting force is equally divided between the Froude-Krylov and the diffraction components. This is not the case for Heave!
F) Heave exciting force on a surface piercing section
In long waves, the leading order effect in the exciting force is the hydrostatic contribution:
where [math]\displaystyle{ A_w\, }[/math] is the body water plane area in 2D or 3D. [math]\displaystyle{ A\, }[/math] is the wave amplitude. This can be shown to be the leading order contribution from the Froude-Krylov force
It is easy to verify that: [math]\displaystyle{ \mathbf{X}_3 \to \rho g A A_w \, }[/math].
The scattering contribution is of order [math]\displaystyle{ KB\, }[/math]. For submerged bodies: [math]\displaystyle{ \mathbf{X}_3^{FK}=O(KB)\, }[/math].