Difference between revisions of "Long Wavelength Approximations"
Line 6: | Line 6: | ||
* Long-wavelength approximations (Studied next) | * Long-wavelength approximations (Studied next) | ||
+ | |||
<u>Long-wavelength approximations</u> | <u>Long-wavelength approximations</u> | ||
Line 11: | Line 12: | ||
very frequently the length of ambient waves <math> \lambda \,</math> is large compared to the dimension of floating bodies. | very frequently the length of ambient waves <math> \lambda \,</math> is large compared to the dimension of floating bodies. | ||
− | For example the length of a wave with period <math> T=10 \ \mbox{sec}\,</math> is <math> \lambda \simeq T^2 + \frac{T^2}{2} \simeq | + | For example the length of a wave with period <math> T=10 \ \mbox{sec}\,</math> is <math> \lambda \simeq T^2 + \frac{T^2}{2} \simeq 150\mbox{m} \,</math>. The beam of a ship with length <math> L=100\mbox{m}\,</math> can be <math>20\mbox{m}\,</math> as is the case for the diameter of the leg of an offshore platform. |
+ | |||
<u>GI Taylor's formula</u> | <u>GI Taylor's formula</u> | ||
− | <math> U(X,t):\ \mbox{Velocity of ambient unidirectional flow \,</math> | + | <math> U(X,t):\ \mbox{Velocity of ambient unidirectional flow} \,</math> |
<math> P(X,t):\ \mbox{Pressure corresponding to} \ U(X,t) \,</math> | <math> P(X,t):\ \mbox{Pressure corresponding to} \ U(X,t) \,</math> | ||
Line 21: | Line 23: | ||
<center><math> \lambda \sim \frac{|U|}{|\nabla U|} \gg B \ = \ \mbox{Body characteristic dimension} \,</math></center> | <center><math> \lambda \sim \frac{|U|}{|\nabla U|} \gg B \ = \ \mbox{Body characteristic dimension} \,</math></center> | ||
− | * In the absence of viscous effects and to leading order for <math> | + | * In the absence of viscous effects and to leading order for <math>\lambda \gg B \,</math>: |
− | \ lambda \gg B \,</math>: | ||
<center><math> F_X = - \left( \forall + \frac{A_{11}}{\rho} \right) \left. \frac{\partial P}{\partial x} \right|^{X=0} </math></center> | <center><math> F_X = - \left( \forall + \frac{A_{11}}{\rho} \right) \left. \frac{\partial P}{\partial x} \right|^{X=0} </math></center> | ||
Line 30: | Line 31: | ||
<center><math> \bullet \ \forall: \ \mbox{Body displacement}\,</math></center> | <center><math> \bullet \ \forall: \ \mbox{Body displacement}\,</math></center> | ||
− | <center><math> \bullet | + | <center><math> \bullet \ A_{11}: \ \mbox{Surge added mass} \,</math></center> |
An alternative form of GI Taylor's formula for a fixed body follows from Euler's equations: | An alternative form of GI Taylor's formula for a fixed body follows from Euler's equations: | ||
Line 69: | Line 70: | ||
So the horizontal force on the circle is: | So the horizontal force on the circle is: | ||
− | <center><math>F_X = \left( \forall + \frac{a_{11}{\rho} \right) \frac{\partial u}{\partial t} + O \left( Z^2 \right) </math></center> | + | <center><math>F_X = \left( \forall + \frac{a_{11}}{\rho} \right) \frac{\partial u}{\partial t} + O \left( Z^2 \right) </math></center> |
<center><math> \forall =\pi a^2, \quad a_{11} = \pi \rho a^2 \,</math></center> | <center><math> \forall =\pi a^2, \quad a_{11} = \pi \rho a^2 \,</math></center> | ||
Line 112: | Line 113: | ||
estimate of the surge exciting force on one leg of a possibly multi-leg platform | estimate of the surge exciting force on one leg of a possibly multi-leg platform | ||
− | * As <math> T \to \infty; \quad \frac{1-e^{-KT}{K} \to \frac{1}{K} | + | * As <math> T \to \infty; \quad \frac{1-e^{-KT}}{K} \to \frac{1}{K} |
\,</math> | \,</math> | ||
Line 124: | Line 125: | ||
introducing the phase factors: | introducing the phase factors: | ||
− | <center><math> \mathbf{P}_i = e^{-iKX_i} | + | <center><math> \mathbf{P}_i = e^{-iKX_i} </math></center> |
Let: | Let: | ||
Line 144: | Line 145: | ||
E) Surge exciting force on a 2D section | E) Surge exciting force on a 2D section | ||
− | <center><math> \Phi_I = \ | + | <center><math> \Phi_I = \mathfrak{Re} \left\{ \frac{ i g A}{\omega} e^{KZ-iKX+i\omega t} \right\} \,</math></center> |
<center><math> u=\mathfrak{Re} \left\{ \frac{ i g A}{\omega} (- i K ) e^{KZ-iKX+i\omega t} \right\} \,</math></center> | <center><math> u=\mathfrak{Re} \left\{ \frac{ i g A}{\omega} (- i K ) e^{KZ-iKX+i\omega t} \right\} \,</math></center> | ||
Line 168: | Line 169: | ||
where <math>A_w\,</math> is the body water plane area in 2D or 3D. <math>A\,</math> is the wave amplitude. This can be shown to be the leading order contribution from the Froude-Krylov force | where <math>A_w\,</math> is the body water plane area in 2D or 3D. <math>A\,</math> is the wave amplitude. This can be shown to be the leading order contribution from the Froude-Krylov force | ||
− | <center><math> \mathbf{X}_3^{FK} = \rho g A \iint_{S_B} e^{KZ-iKX} n_3 dS \,<math></center> | + | <center><math> \mathbf{X}_3^{FK} = \rho g A \iint_{S_B} e^{KZ-iKX} n_3 dS \,</math></center> |
Using the Taylor series expansion: | Using the Taylor series expansion: |
Revision as of 10:20, 4 March 2007
Analytical solutions of the wave-body problem formulated above are rare. The few exceptions which find frequent use in practice are:
- Wavemaker theory (Studied)
- Diffraction by a vertical circular cylinder (Studied below)
- Long-wavelength approximations (Studied next)
Long-wavelength approximations
very frequently the length of ambient waves [math]\displaystyle{ \lambda \, }[/math] is large compared to the dimension of floating bodies.
For example the length of a wave with period [math]\displaystyle{ T=10 \ \mbox{sec}\, }[/math] is [math]\displaystyle{ \lambda \simeq T^2 + \frac{T^2}{2} \simeq 150\mbox{m} \, }[/math]. The beam of a ship with length [math]\displaystyle{ L=100\mbox{m}\, }[/math] can be [math]\displaystyle{ 20\mbox{m}\, }[/math] as is the case for the diameter of the leg of an offshore platform.
GI Taylor's formula
[math]\displaystyle{ U(X,t):\ \mbox{Velocity of ambient unidirectional flow} \, }[/math]
[math]\displaystyle{ P(X,t):\ \mbox{Pressure corresponding to} \ U(X,t) \, }[/math]
- In the absence of viscous effects and to leading order for [math]\displaystyle{ \lambda \gg B \, }[/math]:
An alternative form of GI Taylor's formula for a fixed body follows from Euler's equations:
Thus:
If the body is also translating in the X-direction with displacement [math]\displaystyle{ X_1(t)\, }[/math] then the total force becomes
Often, when the ambient velocity [math]\displaystyle{ U\, }[/math] is arising from plane progressive waves, [math]\displaystyle{ \left| U \frac{\partial U}{\partial X} \right| = 0(A^2) \, }[/math] and is omitted. Note that [math]\displaystyle{ U\, }[/math] does not include disturbance effects due to the body.
- Applications of GI Taylor's formula in wave-body interactions
A) Archimedean hydrostatics
- So Archimedes' formula is a special case of GI Taylor when there
is no flow. This offers an intuitive meaning to the term that includes the body displacement.
B) Regular waves over a circle fixed under the free surface
So the horizontal force on the circle is:
Thus:
- Derive the vertical force along very similar lines. It is simply [math]\displaystyle{ 90^\circ\, }[/math] out of phase relative to [math]\displaystyle{ F_X\, }[/math] with the same modulus.
C) Horizontal force on a fixed circular cylinder of draft [math]\displaystyle{ T\, }[/math]:
This case arises frequently in wave interactions with floating offshore platforms.
Here we will evaluate [math]\displaystyle{ \frac{\partial u}{\partial t} \, }[/math] on the axis of the platform and use a strip wise integration to evaluate the total hydrodynamic force.
The differential horizontal force over a strip [math]\displaystyle{ d Z \, }[/math] at a depth [math]\displaystyle{ Z \, }[/math] becomes:
The total horizontal force over a truncated cylinder of draft [math]\displaystyle{ T\, }[/math] becomes:
- This is a very useful and practical result. It provides an
estimate of the surge exciting force on one leg of a possibly multi-leg platform
- As [math]\displaystyle{ T \to \infty; \quad \frac{1-e^{-KT}}{K} \to \frac{1}{K} \, }[/math]
D) Horizontal force on multiple vertical cylinders in any arrangement:
The proof is essentially based on a phasing argument. Relative to the reference frame:
- Express the incident wave relative to the local frames by
introducing the phase factors:
Let:
Then relative to the i-th leg:
Ignoring interactions between legs, which is a good approximation in long waves, the total exciting force on an n-cylinder platform is:
The above expression gives the complex amplitude of the force with [math]\displaystyle{ \mathbf{X}_1\, }[/math] given in the single cylinder case.
- The above technique may be easily extended to estimate the Sway force and Yaw moment on n-cylinders with little extra effort.
E) Surge exciting force on a 2D section
- If the body section is a circle with radius [math]\displaystyle{ a\, }[/math]:
So in long waves, the surge exciting force is equally divided between the Froude-Krylov and the diffraction components. This is not the case for Heave!
F) Heave exciting force on a surface piercing section
In long waves, the leading order effect in the exciting force is the hydrostatic contribution:
where [math]\displaystyle{ A_w\, }[/math] is the body water plane area in 2D or 3D. [math]\displaystyle{ A\, }[/math] is the wave amplitude. This can be shown to be the leading order contribution from the Froude-Krylov force
Using the Taylor series expansion:
It is easy to verify that: [math]\displaystyle{ \mathbf{X}_3 \to \rho g A A_w \, }[/math].
The scattering contribution is of order [math]\displaystyle{ KB\, }[/math]. For submerged bodies: [math]\displaystyle{ \mathbf{X}_3^{FK}=O(KB)\, }[/math].