Difference between revisions of "Floating Elastic Plates of Identical Properties"
(45 intermediate revisions by 2 users not shown) | |||
Line 42: | Line 42: | ||
and <math>k_n</math> are the solutions of the [[Dispersion Relation for a Floating Elastic Plate]], | and <math>k_n</math> are the solutions of the [[Dispersion Relation for a Floating Elastic Plate]], | ||
<center><math> | <center><math> | ||
− | \beta | + | \beta k_n^5 \sin(k_nH) - k_n \left(1 - \alpha \gamma \right) \sin(k_nH) = |
− | -\alpha \cos( | + | -\alpha \cos(k_nH) \, |
</math></center> | </math></center> | ||
− | with <math>n=-1,-2</math> corresponding to the complex solutions with positive real part, | + | with <math> e^{-i\omega t} </math> so that <math>n=-1,-2</math> corresponding to the complex solutions with positive real part, |
− | <math>n=0</math> corresponding to the imaginary solution with | + | <math>n=0</math> corresponding to the imaginary solution with negative imaginary part and |
<math>n>0</math> corresponding to the real solutions with positive real part. | <math>n>0</math> corresponding to the real solutions with positive real part. | ||
Line 55: | Line 55: | ||
\oint_{\partial U} \left( G {\partial \phi \over \partial n} - \phi {\partial G \over \partial n}\right)\, dS | \oint_{\partial U} \left( G {\partial \phi \over \partial n} - \phi {\partial G \over \partial n}\right)\, dS | ||
</math></center> | </math></center> | ||
− | where n | + | where n represents the plane normal to the boundary, S. |
Our governing equations for G and <math>\phi</math> imply that the L.H.S of Green's second identity is zero so that | Our governing equations for G and <math>\phi</math> imply that the L.H.S of Green's second identity is zero so that | ||
Line 71: | Line 71: | ||
</math></center> | </math></center> | ||
− | where we take the limit as N goes to infinity. | + | where we take the limit as N goes to infinity. We have to evaluate four integrals, the integral at the top, the integral at the bottom and the integrals at either end. |
− | We now introduce the incident potential | + | |
+ | |||
+ | = Evaluation of the integrals = | ||
+ | |||
+ | We have to evaluate four integrals, the integral at the top, the integral at the bottom and the integrals at either end. We now introduce the incident potential and we can write as <math>x\to -\infty</math> | ||
<center><math> | <center><math> | ||
− | \phi = A(e^{k_0x} + R e^{k_0x})\cos{(k_n(z+H))} | + | \phi = A(e^{-k_0x} + R e^{k_0x})\cos{(k_n(z+H))} |
</math></center> | </math></center> | ||
+ | and | ||
<center><math> | <center><math> | ||
− | \phi_x = Ak_0(e^{k_0x} + R e^{k_0x})\cos{(k_n(z+H))} | + | \phi_x = Ak_0(-e^{-k_0x} + R e^{k_0x})\cos{(k_n(z+H))} |
</math></center> | </math></center> | ||
− | + | where <math>R</math> and <math>T</math> and reflection and transmission coefficient. | |
− | + | For <math>x\to\infty</math> | |
− | |||
− | |||
− | |||
− | |||
<center><math> | <center><math> | ||
\phi = AT e^{-k_0x}\cos{(k_n(z+H))} | \phi = AT e^{-k_0x}\cos{(k_n(z+H))} | ||
Line 92: | Line 93: | ||
\phi_x = -Ak_0T e^{-k_0x}\cos{(k_n(z+H))} | \phi_x = -Ak_0T e^{-k_0x}\cos{(k_n(z+H))} | ||
</math></center> | </math></center> | ||
− | where we choose A to normalise and assume k_0 is | + | where we choose A to normalise and assume k_0 is negative imaginary. |
− | + | The limit as <math>x</math> tends to plus or minus infinity | |
− | + | <center><math> | |
+ | \lim_{x\to\pm\infty}G = -i\frac{\sin{(k_0 H)}\cos{(k_0(z+H))}}{2\alpha C(k_0)}e^{-k_0|x-x^{\prime}|}, | ||
+ | </math></center> | ||
<center><math> | <center><math> | ||
− | G_x = -k_0(sgn(x-x^\prime))G | + | G_x = -k_0(\sgn(x-x^\prime))G |
</math></center> | </math></center> | ||
− | + | == Integral at the right end == | |
− | |||
− | |||
− | |||
− | |||
− | |||
<math> | <math> | ||
Line 114: | Line 112: | ||
</math></center> | </math></center> | ||
− | and | + | == Integral and the left end == |
<math> | <math> | ||
Line 120: | Line 118: | ||
</math> | </math> | ||
<center><math> | <center><math> | ||
− | =-\int_{-h}^0 \left( Ak_0G(e^{ | + | =-\int_{-h}^0 \left( Ak_0G(-e^{k_0N} + R e^{-k_0N})\cos{(k_n(z+H))} - Ak_0G(e^{k_0N} + R e^{-k_0N})\cos{(k_n(z+H))} \right)\, dz |
− | =0 | + | </math></center> |
+ | <center><math> | ||
+ | =\int_{-h}^0 \left( 2Ak_0G\cos{(k_0(z+H))}e^{k_0N} \right)\, dz | ||
+ | </math></center> | ||
+ | <center><math> | ||
+ | =\int_{-h}^0 \left( -i\frac{Ak_0}{\alpha C}\sin(k_0H)\cos^2{(k_0(z+H))} \right)\, dz | ||
</math></center> | </math></center> | ||
--------- | --------- | ||
− | ???????????? I | + | ???????????? Hmmm is this right? I know A normalises, but should it be this complex. ????????????? |
--------- | --------- | ||
− | Also, | + | == Integral at the bottom == |
+ | Also, our governing equations imply <math>G {\partial \phi \over \partial z}|_{z=-h} = 0 </math> and <math>\phi {\partial G \over \partial z}|_{z=-h} = 0</math> so that, | ||
<center><math> | <center><math> | ||
\int_{-\infty}^\infty \left( G {\partial \phi \over \partial z}|_{z=-h} - \phi {\partial G \over \partial z}|_{z=-h}\right)\, dx =0 | \int_{-\infty}^\infty \left( G {\partial \phi \over \partial z}|_{z=-h} - \phi {\partial G \over \partial z}|_{z=-h}\right)\, dx =0 | ||
</math></center> | </math></center> | ||
− | + | ||
+ | == Integral at the top == | ||
+ | |||
+ | The final integral is | ||
<center><math> | <center><math> | ||
− | + | -\int_{-\infty}^\infty \left( G(x,x^\prime,z) \phi_z(x,z)|_{z=0} - \phi(x,z) G_z(x,x^\prime,z) |_{z=0}\right)\, dx | |
</math></center> | </math></center> | ||
At z=0, the z variable disappears to give | At z=0, the z variable disappears to give | ||
<center><math> | <center><math> | ||
− | + | -\int_{-\infty}^\infty \left( G(x,x^\prime) \phi_z(x) - \phi(x) G_z(x,x^\prime)\right)\, dx | |
</math></center> | </math></center> | ||
− | We then substitute | + | We then substitute for <math>\phi</math> and obtain |
<center><math> | <center><math> | ||
\int_{-\infty}^{\infty}\left( | \int_{-\infty}^{\infty}\left( | ||
Line 214: | Line 221: | ||
where | where | ||
<center><math> | <center><math> | ||
− | \chi_s = \beta G_z = \frac{i\beta}{2\alpha} \sum_{n=-2}^\infty\frac{k_n\sin^2{(k_n H)}}{C(k_n)}e^{-k_n|x-x^\prime|}, | + | \chi_s(x-x^\prime) = \beta G_z = \frac{i\beta}{2\alpha} \sum_{n=-2}^\infty\frac{k_n\sin^2{(k_n H)}}{C(k_n)}e^{-k_n|x-x^\prime|}, |
</math></center> | </math></center> | ||
<center><math> | <center><math> | ||
− | \chi_a = \beta\partial_x G_z = -sgn(x-x^\prime)\frac{i\beta}{2\alpha} \sum_{n=-2}^\infty\frac{k_n^2\sin^2{(k_n H)}}{C(k_n)}e^{-k_n|x-x^\prime|}, | + | \chi_a(x-x^\prime) = \beta\partial_x G_z = -\sgn(x-x^\prime)\frac{i\beta}{2\alpha} \sum_{n=-2}^\infty\frac{k_n^2\sin^2{(k_n H)}}{C(k_n)}e^{-k_n|x-x^\prime|}, |
</math></center> | </math></center> | ||
<center><math> | <center><math> | ||
− | \psi_s = \beta\partial_x^2 G_z = \frac{i\beta}{2\alpha} \sum_{n=-2}^\infty\frac{k_n^3\sin^2{(k_n H)}}{C(k_n)}e^{-k_n|x-x^\prime|}, | + | \psi_s(x-x^\prime) = \beta\partial_x^2 G_z = \frac{i\beta}{2\alpha} \sum_{n=-2}^\infty\frac{k_n^3\sin^2{(k_n H)}}{C(k_n)}e^{-k_n|x-x^\prime|}, |
</math></center> | </math></center> | ||
<center><math> | <center><math> | ||
− | \psi_a =\beta\partial_x^3 G_z = -sgn(x-x^\prime)\frac{i\beta}{2\alpha} \sum_{n=-2}^\infty\frac{k_n^4\sin^2{(k_n H)}}{C(k_n)}e^{-k_n|x-x^\prime|} | + | \psi_a(x-x^\prime) =\beta\partial_x^3 G_z = -\sgn(x-x^\prime)\frac{i\beta}{2\alpha} \sum_{n=-2}^\infty\frac{k_n^4\sin^2{(k_n H)}}{C(k_n)}e^{-k_n|x-x^\prime|} |
</math></center> | </math></center> | ||
and | and | ||
<center><math> | <center><math> | ||
− | \phi_z^{In} = e^{k_0x}\frac{\sin(k_0(z+H))}{\sin(k_0H)} | + | \phi_z^{In} = e^{-k_0x}\frac{\sin(k_0(z+H))}{\sin(k_0H)} |
</math></center> | </math></center> | ||
Line 242: | Line 249: | ||
</math> | </math> | ||
<center><math> | <center><math> | ||
− | = k_0^2e^{k_0x} \frac{\sin(k_0z+H)}{\sin(k_0H)} + \frac{i\beta}{2\alpha}\sum_{n=-2}^\infty \frac{\sin^2{(k_n H)}}{ C(k_n)}e^{-k_n|x-x^\prime|} | + | = k_0^2e^{-k_0x} \frac{\sin(k_0z+H)}{\sin(k_0H)} + \frac{i\beta}{2\alpha}\sum_{n=-2}^\infty \frac{\sin^2{(k_n H)}}{ C(k_n)}e^{-k_n|x-x^\prime|} |
\left[sgn(x-x^\prime)k_n^6[\phi_z] + k_n^5[\partial_{x}\phi_z] \right] | \left[sgn(x-x^\prime)k_n^6[\phi_z] + k_n^5[\partial_{x}\phi_z] \right] | ||
</math></center> | </math></center> | ||
Line 251: | Line 258: | ||
</math> | </math> | ||
<center><math> | <center><math> | ||
− | = k_0^3e^{k_0x} \frac{\sin(k_0z+H)}{\sin(k_0H)} - \frac{i\beta}{2\alpha}\sum_{n=-2}^\infty \frac{\sin^2{(k_n H)}}{ C(k_n)}e^{-k_n|x-x^\prime|} | + | = -k_0^3e^{-k_0x} \frac{\sin(k_0z+H)}{\sin(k_0H)} - \frac{i\beta}{2\alpha}\sum_{n=-2}^\infty \frac{\sin^2{(k_n H)}}{ C(k_n)}e^{-k_n|x-x^\prime|} |
\left[k_n^7[\phi_z] + sgn(x-x^\prime)k_n^6[\partial_{x}\phi_z] \right] | \left[k_n^7[\phi_z] + sgn(x-x^\prime)k_n^6[\partial_{x}\phi_z] \right] | ||
</math></center> | </math></center> | ||
Line 257: | Line 264: | ||
At <math>x=x^\prime</math> and z=0, the first edge conditions gives | At <math>x=x^\prime</math> and z=0, the first edge conditions gives | ||
<center><math> | <center><math> | ||
− | k_0^2e^{k_0x^\prime} + \frac{i\beta}{2\alpha}\sum_{n=-2}^\infty \frac{\sin^2{(k_n H)}}{ C(k_n)} | + | k_0^2e^{-k_0x^\prime} + \frac{i\beta}{2\alpha}\sum_{n=-2}^\infty \frac{\sin^2{(k_n H)}}{ C(k_n)} |
\left[sgn(x-x^\prime)k_n^6[\phi_z] + k_n^5[\partial_{x}\phi_z] \right] = 0 | \left[sgn(x-x^\prime)k_n^6[\phi_z] + k_n^5[\partial_{x}\phi_z] \right] = 0 | ||
</math></center> | </math></center> | ||
and the second edge condition gives | and the second edge condition gives | ||
<center><math> | <center><math> | ||
− | k_0^3e^{k_0x^\prime} - \frac{i\beta}{2\alpha}\sum_{n=-2}^\infty \frac{\sin^2{(k_n H)}}{ C(k_n)} | + | -k_0^3e^{-k_0x^\prime} - \frac{i\beta}{2\alpha}\sum_{n=-2}^\infty \frac{\sin^2{(k_n H)}}{ C(k_n)} |
\left[k_n^7[\phi_z] + sgn(x-x^\prime)k_n^6[\partial_{x}\phi_z] \right] = 0 | \left[k_n^7[\phi_z] + sgn(x-x^\prime)k_n^6[\partial_{x}\phi_z] \right] = 0 | ||
</math></center> | </math></center> | ||
Line 272: | Line 279: | ||
<center><math> | <center><math> | ||
− | R = \lim\limits_{x\rightarrow\infty} \left( \phi_{z}^{\mathrm{In}}(x) -\psi_a [\phi_z] + \psi_s [\partial_{x}\phi_z]\right) | + | R = \lim\limits_{x\rightarrow-\infty} \left( \phi_{z}^{\mathrm{In}}(x) -\psi_a [\phi_z] + \psi_s [\partial_{x}\phi_z]\right) |
</math></center> | </math></center> | ||
<center><math> | <center><math> | ||
Line 279: | Line 286: | ||
and | and | ||
<center><math> | <center><math> | ||
− | T = \lim\limits_{x\rightarrow | + | T = \lim\limits_{x\rightarrow\infty} \left(\phi_{z}^{\mathrm{In}}(x) -\psi_a [\phi_z] + \psi_s [\partial_{x}\phi_z]\right) |
</math></center> | </math></center> | ||
<center><math> | <center><math> | ||
Line 295: | Line 302: | ||
<center><math> | <center><math> | ||
− | \partial_x^3\phi_z^+(x^\prime) = -\frac{S_l}{\beta}\left( \phi_z^+(x^\prime) - \phi_z^-(x^\prime)\right) | + | \partial_x^3\phi_z^+(x^\prime) = -\frac{S_l}{\beta}\left( \phi_z^+(x^\prime) - \phi_z^-(x^\prime)\right) = -\frac{S_l}{\beta}[\phi_z] |
+ | </math></center> | ||
+ | |||
+ | <center><math> | ||
+ | \partial_x^3\phi_z^-(x^\prime) = -\frac{S_l}{\beta}\left( (\phi_z^+(x^\prime) - \phi_z^-(x^\prime)\right) = -\frac{S_l}{\beta}[\phi_z] | ||
</math></center> | </math></center> | ||
<center><math> | <center><math> | ||
− | \partial_x^ | + | \partial_x^2\phi_z^+(x^\prime) = \frac{S_r}{\beta} \left( \partial_x\phi_z^+(x^\prime) - \partial_x\phi_z^-(x^\prime)\right) = \frac{S_r}{\beta} [\partial_x\phi_z] |
</math></center> | </math></center> | ||
<center><math> | <center><math> | ||
− | \partial_x^2\phi_z^ | + | \partial_x^2\phi_z^-(x^\prime) = \frac{S_r}{\beta}\left( \partial_x\phi_z^+(x^\prime) - \partial_x\phi_z^-(x^\prime) \right) = \frac{S_r}{\beta} [\partial_x\phi_z] |
</math></center> | </math></center> | ||
+ | where <math>\phi^+ </math> is the left edge of the right plate and <math>\phi^-</math> is the right edge of the left plate. | ||
+ | |||
+ | These edge conditions imply <math>\frac{\partial^2\phi_n^+(x^\prime)}{\partial x^2} = \frac{\partial^2\phi_n^-(x^\prime)}{\partial x^2} </math> and <math>\frac{\partial^3\phi_n^+(x^\prime)}{\partial x^3} = \frac{\partial^3\phi_n^-(x^\prime)}{\partial x^3} </math> which imply <math>[\partial_x^2\phi_n] = 0</math> and <math>[\partial_x^3\phi_n] = 0 </math>. | ||
+ | |||
+ | <math> \phi_n </math> can again be expressed by | ||
<center><math> | <center><math> | ||
− | \ | + | \phi_{n}\left( x\right) |
+ | = \phi_{n}^{\mathrm{In}}\left( x\right) + | ||
+ | \psi_a [\phi_n] - \psi_s [\partial_{x^\prime}\phi_n] | ||
</math></center> | </math></center> | ||
− | + | We now have two unknowns which can be solved simultaneously using the following two edge conditions | |
+ | <center><math> | ||
+ | \frac{S_r}{\beta}[\partial_x\phi_z] = \partial_x^2\phi_z | ||
+ | </math></center> | ||
+ | <center><math> | ||
+ | \frac{S_r}{\beta}[\partial_x\phi_z] = k_0^2e^{-k_0x^\prime} + \frac{i\beta}{2\alpha}\sum_{n=-2}^\infty \frac{\sin^2{(k_n H)}}{ C(k_n)} | ||
+ | \left(sgn(x-x^\prime)k_n^6[\phi_z] + k_n^5[\partial_{x}\phi_z] \right) | ||
+ | </math></center> | ||
+ | <center><math> | ||
+ | -k_0^2e^{-k_0x^\prime} = -\frac{S_r}{\beta}[\partial_x\phi_z] + \frac{i\beta}{2\alpha}\sum_{n=-2}^\infty \frac{\sin^2{(k_n H)}}{ C(k_n)} | ||
+ | \left(sgn(x-x^\prime)k_n^6[\phi_z] + k_n^5[\partial_{x}\phi_z] \right) | ||
+ | </math></center> | ||
+ | <center><math> | ||
+ | -k_0^2e^{-k_0x^\prime} = \left(\frac{i\beta}{2\alpha}\sum_{n=-2}^\infty \frac{\sin^2{(k_n H)}}{C(k_n)}\left(\sgn(x-x^\prime)k_n^6\right)\right)[\phi_z] | ||
+ | + \left(-\frac{S_r}{\beta} + \frac{i\beta}{2\alpha}\sum_{n=-2}^\infty \frac{\sin^2{(k_n H)}}{ C(k_n)} k_n^5\right)[\partial_{x}\phi_z] | ||
+ | </math></center> | ||
+ | and | ||
+ | <center><math> | ||
+ | -\frac{S_l}{\beta}[\phi_z] = \partial_x^3\phi_z(x) | ||
+ | </math></center> | ||
+ | <center><math> | ||
+ | -\frac{S_l}{\beta}[\phi_z] = -k_0^3e^{-k_0x^\prime} - \frac{i\beta}{2\alpha}\sum_{n=-2}^\infty \frac{\sin^2{(k_n H)}}{ C(k_n)} | ||
+ | \left(k_n^7[\phi_z] + sgn(x-x^\prime)k_n^6[\partial_{x}\phi_z] \right) | ||
+ | </math></center> | ||
+ | <center><math> | ||
+ | k_0^3e^{-k_0x^\prime} = \frac{S_l}{\beta}[\phi_z] - \frac{i\beta}{2\alpha}\sum_{n=-2}^\infty \frac{\sin^2{(k_n H)}}{ C(k_n)} | ||
+ | \left(k_n^7[\phi_z] + sgn(x-x^\prime)k_n^6[\partial_{x}\phi_z] \right) | ||
+ | </math></center> | ||
+ | <center><math> | ||
+ | k_0^3e^{-k_0x^\prime} = \left(\frac{S_l}{\beta} - \frac{i\beta}{2\alpha}\sum_{n=-2}^\infty \frac{\sin^2{(k_n H)}}{ C(k_n)} k_n^7\right)[\phi_z] | ||
+ | - \left(\frac{i\beta}{2\alpha}\sum_{n=-2}^\infty \frac{\sin^2{(k_n H)}}{ C(k_n)} \left(sgn(x-x^\prime)k_n^6\right)\right)[\partial_{x}\phi_z] | ||
+ | </math></center> | ||
+ | |||
+ | = A Set of Floating Elastic Plates of Identical Properties = | ||
+ | |||
+ | We now present the solution for the case of a set of cracks with waves incident from normal. | ||
+ | |||
+ | The solution is similiar to the case for one crack except that we solve for a set of cracks where <math> x^\prime_j </math> is the position of the <math>j^{th}</math> crack so that | ||
+ | |||
+ | <center><math> | ||
+ | \phi_{z} = \phi_{z}^{\mathrm{In}} + \sum_{j=1}^N\left( - \psi_a(x-x^\prime_j) [\phi_z]_j + \psi_s(x-x^\prime_j) [\partial_{x}\phi_z]_j | ||
+ | - \chi_a(x-x^\prime_j) [\partial_{x}^2\phi_z]_j + \chi_s(x-x^\prime_j) [\partial_{x}^3\phi_z]_j \right) | ||
+ | </math></center> | ||
+ | |||
+ | where there are <math>N</math> cracks and [] is the jump at the <math>j^{th}</math> crack. | ||
+ | |||
+ | If we consider the standard edge conditions of <math> \partial_x^2\phi = 0 </math> and <math> \partial_x^3\phi = 0 </math>, our edge conditions become | ||
+ | <center><math> | ||
+ | k_0^2e^{-k_0x_r} + \frac{i\beta}{2\alpha}\sum_{j=1}^N \left( \sum_{n=-2}^\infty \frac{\sin^2{(k_n H)}}{ C(k_n)} e^{k_n(x_r-x_j^\prime)} | ||
+ | \left[sgn(x_r-x_j^\prime)k_n^6[\phi_z]_j + k_n^5[\partial_{x}\phi_z]_j \right]\right) = 0 | ||
+ | </math></center> | ||
+ | <center><math> | ||
+ | -k_0^3e^{-k_0x_r} - \frac{i\beta}{2\alpha}\sum_{j=1}^N \left( \sum_{n=-2}^\infty \frac{\sin^2{(k_n H)}}{ C(k_n)} e^{k_n(x_r-x_j^\prime)} | ||
+ | \left[k_n^7[\phi_z]_j + sgn(x_r-x_j^\prime)k_n^6[\partial_{x}\phi_z]_j \right]\right) = 0 | ||
+ | </math></center> | ||
+ | |||
+ | where we consider the jump across <math> x_r </math> for each <math> r =1,2, ..., N </math> | ||
+ | |||
+ | The reflection and transmission coefficients, <math>R</math> and <math>T</math> can now be expressed as | ||
+ | <center><math> | ||
+ | R = e^{k(1)x_1^\prime}\left[- \frac{i\beta\sin^2(k_0h)}{2\alpha C(k_0)}\sum_{j=1}^N e^{-k(1)x_j^\prime}\left[k_0^4[\phi_z]_j - k_0^3[\partial_{x}\phi_z]_j\right]\right] | ||
+ | </math></center> | ||
+ | and | ||
+ | <center><math> | ||
+ | T = e^{-k(1)x_N^\prime}\left[1 + \frac{i\beta\sin^2(k_0h)}{2\alpha C(k_0)}\sum_{j=1}^N e^{k(1)x_j^\prime}\left[k_0^4[\phi_z]_j + k_0^3[\partial_{x}\phi_z]_j\right]\right] | ||
+ | </math> | ||
+ | </center> |
Latest revision as of 14:11, 6 June 2007
Introduction
We begin by presenting the solution for the case of a single crack with waves incident from normal. The solution method is derived from Squire and Dixon 2001 and Evans and Porter 2005.
We consider the entire free surface to be occupied by a Floating Elastic Plate with a single discontinuity at [math]\displaystyle{ x=x^\prime }[/math] (Fig. 1).
Image:GreenFunct.jpg
The governing equations are
The Free-Surface Green Function for a Floating Elastic Plate satisfies the following equations (plus the Sommerfeld Radiation Condition far from the body)
where
and [math]\displaystyle{ k_n }[/math] are the solutions of the Dispersion Relation for a Floating Elastic Plate,
with [math]\displaystyle{ e^{-i\omega t} }[/math] so that [math]\displaystyle{ n=-1,-2 }[/math] corresponding to the complex solutions with positive real part, [math]\displaystyle{ n=0 }[/math] corresponding to the imaginary solution with negative imaginary part and [math]\displaystyle{ n\gt 0 }[/math] corresponding to the real solutions with positive real part.
Green's Second Identity
Since φ and G are both twice continuously differentiable on U, where U represents the area bounded by the contour, S (Fig 1), the Green's second identity can be applied and gives
where n represents the plane normal to the boundary, S.
Our governing equations for G and [math]\displaystyle{ \phi }[/math] imply that the L.H.S of Green's second identity is zero so that
expanding gives [math]\displaystyle{ 0 = -\int_{-\infty}^\infty \left( G {\partial \phi \over \partial z}|_{z=0} - \phi {\partial G \over \partial z}|_{z=0}\right)\, dx +\int_{-h}^0 \left( G {\partial \phi \over \partial x}|_{x=N} - \phi {\partial G \over \partial x}|_{x=N}\right)\, dz }[/math]
where we take the limit as N goes to infinity. We have to evaluate four integrals, the integral at the top, the integral at the bottom and the integrals at either end.
Evaluation of the integrals
We have to evaluate four integrals, the integral at the top, the integral at the bottom and the integrals at either end. We now introduce the incident potential and we can write as [math]\displaystyle{ x\to -\infty }[/math]
and
where [math]\displaystyle{ R }[/math] and [math]\displaystyle{ T }[/math] and reflection and transmission coefficient. For [math]\displaystyle{ x\to\infty }[/math]
where we choose A to normalise and assume k_0 is negative imaginary. The limit as [math]\displaystyle{ x }[/math] tends to plus or minus infinity
Integral at the right end
[math]\displaystyle{ \int_{-h}^0 \left( G {\partial \phi \over \partial x}|_{x=N} - \phi {\partial G \over \partial x}|_{x=N}\right)\, dz }[/math]
Integral and the left end
[math]\displaystyle{ -\int_{-h}^0 \left( G {\partial \phi \over \partial x}|_{x=-N} - \phi {\partial G \over \partial x}|_{x=-N}\right)\, dz }[/math]
???????????? Hmmm is this right? I know A normalises, but should it be this complex. ?????????????
Integral at the bottom
Also, our governing equations imply [math]\displaystyle{ G {\partial \phi \over \partial z}|_{z=-h} = 0 }[/math] and [math]\displaystyle{ \phi {\partial G \over \partial z}|_{z=-h} = 0 }[/math] so that,
Integral at the top
The final integral is
At z=0, the z variable disappears to give
We then substitute for [math]\displaystyle{ \phi }[/math] and obtain
We now integrate by parts remembering that [math]\displaystyle{ \phi_z }[/math] is continuous everywhere except at [math]\displaystyle{ x = x^\prime }[/math] so that
where
[math]\displaystyle{ \int_{-a}^b(\partial_x^4\phi_z)G_z dx = \int_a^b\phi(\partial_xG)dx - \phi(b)(\partial_x^3G(b) + \phi(a)(\partial_x^3G(a) + (\partial_x\phi(b))(\partial_x^2G(b)) }[/math]
and obtain
[math]\displaystyle{ \int_{-\infty}^{\infty}\left\{ \frac{1}{\alpha}\left( \beta \partial_{x}^4 - \gamma\alpha + 1\right)G_{z}\left( x,x^{\prime }\right) - G( x,x^\prime)\right\} \phi_z(x)dx }[/math]
where [] denotes the jump in the function at [math]\displaystyle{ x = x^{\prime} }[/math].
The integral can be simplified using the delta function property of the Green function to give us
We can write the equation in terms of [math]\displaystyle{ \phi }[/math] as was done by Porter and Evans 2005 but there is no real point because the boundary conditions are given in terms of [math]\displaystyle{ \phi_z }[/math] since this represents the displacement.
We include the boundary conditions at infinity, which we omitted earlier, to give the full equation
which can be solved by applying the edge conditions at [math]\displaystyle{ x=x^\prime }[/math] and z = 0
[math]\displaystyle{ \partial_x^2\phi_z=0,\,\,\, {\rm and}\,\,\,\, \partial_x^3\phi_z=0. }[/math]
Solution
We re-express [math]\displaystyle{ \phi_z }[/math] as
where
and
The edge conditions given above imply that [math]\displaystyle{ [\partial_{x}^2\phi_z] }[/math] and [math]\displaystyle{ [\partial_{x}^3\phi_z] }[/math] are zero so that [math]\displaystyle{ \phi_z }[/math] becomes
We are now left with two unknowns which can be solved using the two edge conditions. To solve, we use
[math]\displaystyle{ \partial_x^2\phi_z = \partial_x^2\phi_z^{In} - \partial_x^2\psi_a [\phi_z] + \partial_x^2\psi_s [\partial_{x}\phi_z] }[/math]
and
[math]\displaystyle{ \partial_x^3\phi_z = \partial_x^3\phi_z^{In} - \partial_x^3\psi_a [\phi_z] + \partial_x^3\psi_s [\partial_{x}\phi_z] }[/math]
At [math]\displaystyle{ x=x^\prime }[/math] and z=0, the first edge conditions gives
and the second edge condition gives
The jump conditions [math]\displaystyle{ [\phi_z] }[/math] and [math]\displaystyle{ [\partial_{x}\phi_z] }[/math] can be solved by solving the edge conditions simultaneously.
The reflection and transmission coefficients, [math]\displaystyle{ R }[/math] and [math]\displaystyle{ T }[/math] can be found by taking the limit of [math]\displaystyle{ \phi_z }[/math] as [math]\displaystyle{ x\rightarrow\pm\infty }[/math] ie
and
More complicated boundary conditions
More complicated boundary conditions can be treated using this formulation.
Previously, we considered plates with free edges ie with a zero bending moment and zero shear force at each edge. Here, we consider that each plate be connected by a series of flexural rotational springs (stiffness denoted by [math]\displaystyle{ S_r }[/math]) and vertical linear springs (stiffness denoted by [math]\displaystyle{ S_l }[/math]). The edge conditions become:
where [math]\displaystyle{ \phi^+ }[/math] is the left edge of the right plate and [math]\displaystyle{ \phi^- }[/math] is the right edge of the left plate.
These edge conditions imply [math]\displaystyle{ \frac{\partial^2\phi_n^+(x^\prime)}{\partial x^2} = \frac{\partial^2\phi_n^-(x^\prime)}{\partial x^2} }[/math] and [math]\displaystyle{ \frac{\partial^3\phi_n^+(x^\prime)}{\partial x^3} = \frac{\partial^3\phi_n^-(x^\prime)}{\partial x^3} }[/math] which imply [math]\displaystyle{ [\partial_x^2\phi_n] = 0 }[/math] and [math]\displaystyle{ [\partial_x^3\phi_n] = 0 }[/math].
[math]\displaystyle{ \phi_n }[/math] can again be expressed by
We now have two unknowns which can be solved simultaneously using the following two edge conditions
and
A Set of Floating Elastic Plates of Identical Properties
We now present the solution for the case of a set of cracks with waves incident from normal.
The solution is similiar to the case for one crack except that we solve for a set of cracks where [math]\displaystyle{ x^\prime_j }[/math] is the position of the [math]\displaystyle{ j^{th} }[/math] crack so that
where there are [math]\displaystyle{ N }[/math] cracks and [] is the jump at the [math]\displaystyle{ j^{th} }[/math] crack.
If we consider the standard edge conditions of [math]\displaystyle{ \partial_x^2\phi = 0 }[/math] and [math]\displaystyle{ \partial_x^3\phi = 0 }[/math], our edge conditions become
where we consider the jump across [math]\displaystyle{ x_r }[/math] for each [math]\displaystyle{ r =1,2, ..., N }[/math]
The reflection and transmission coefficients, [math]\displaystyle{ R }[/math] and [math]\displaystyle{ T }[/math] can now be expressed as
and