Difference between revisions of "Wave Forces on a Body"
Line 97: | Line 97: | ||
| <math> \underbrace{m_{ij}} \, </math> || <math> \dot{U}_j \ - \, </math> | | <math> \underbrace{m_{ij}} \, </math> || <math> \dot{U}_j \ - \, </math> | ||
| <math> \underbrace{d_{ij}} \, </math> || <math> U_j \, </math> | | <math> \underbrace{d_{ij}} \, </math> || <math> U_j \, </math> | ||
− | |- | + | |- valign="top" |
| || width="50" | body surface || width="50" | added mass || || width="50" | wave radiation damping | | || width="50" | body surface || width="50" | added mass || || width="50" | wave radiation damping | ||
|} | |} | ||
=== Important parameters === | === Important parameters === |
Revision as of 03:12, 18 July 2007
Wave Forces on a Body
[math]\displaystyle{ D_F = \frac{F}{\rho g A \ell^2} = f \left( \frac{}{} \right. }[/math] | [math]\displaystyle{ \underbrace{\frac{A}{\lambda}} \, }[/math], | [math]\displaystyle{ \underbrace{\frac{\ell}{\lambda}} \, }[/math], | [math]\displaystyle{ R_e \, }[/math], | [math]\displaystyle{ \frac{h}{\lambda} \, }[/math], | roughness, | [math]\displaystyle{ \ldots \left. \frac{}{} \right) \, }[/math] |
Wave | Diffraction | |||||
steepness | parameter |
Type of Forces
1. Viscous forces Form drag, viscous drag [math]\displaystyle{ = f ( R_e, K_c, \, }[/math] roughness, [math]\displaystyle{ \ldots ) }[/math].
- Form drag [math]\displaystyle{ ( C_D ) \, }[/math]
Associated primarily with flow separation -normal stresses.
- Friction drag [math]\displaystyle{ ( C_F ) \, }[/math]
Associated with skin friction [math]\displaystyle{ \tau_w, \ i.e., \ \vec{F} \sim \iint_{\mbox{body (wetted surface)}} \tau_w dS \, }[/math].
2. Inertial forces Froude-Krylov forces, diffraction forces, radiation forces.
Forces arising from potential flow wave theory,
For linear theory, the velocity potential [math]\displaystyle{ \phi \, }[/math] and the pressure [math]\displaystyle{ p \, }[/math] can be decomposed to
[math]\displaystyle{ \phi = \, }[/math] | [math]\displaystyle{ \underbrace{\phi_I} \, }[/math] | [math]\displaystyle{ + \, }[/math] | [math]\displaystyle{ \underbrace{\phi_D} \, }[/math] | [math]\displaystyle{ + \, }[/math] | [math]\displaystyle{ \underbrace{\phi_R} \, }[/math] | ||
Incident wave | Diffracted wave | Radiated wave | |||||
potential [math]\displaystyle{ (a) \, }[/math] | potential [math]\displaystyle{ (b.1) \, }[/math] | potential [math]\displaystyle{ (b.2) \, }[/math] | |||||
[math]\displaystyle{ - \frac{p}{\rho} = \, }[/math] | [math]\displaystyle{ \frac{\partial\phi_I}{\partial t} \, }[/math] | [math]\displaystyle{ + \, }[/math] | [math]\displaystyle{ \frac{\partial\phi_D}{\partial t} \, }[/math] | [math]\displaystyle{ + \, }[/math] | [math]\displaystyle{ \frac{\partial\phi_R}{\partial t} \, }[/math] | [math]\displaystyle{ + \, }[/math] | [math]\displaystyle{ g y \, }[/math] |
(a) Incident wave potential
- Froude-Krylov Force approximation When [math]\displaystyle{ \ell \ll \lambda \, }[/math], the incident wave field is not significantly modified by the presence of the body, therefore ignore [math]\displaystyle{ \phi_D \, }[/math] and [math]\displaystyle{ \phi_R \, }[/math]. Froude-Krylov approximation:
[math]\displaystyle{ \left. \begin{matrix} & \phi \approx \phi_I \\ & p \approx - \rho \left( \frac{\partial\phi_I}{\partial t} + g y \right) \end{matrix} \right\} }[/math] | [math]\displaystyle{ \Rightarrow \vec{F}_{FK} = \, }[/math] | [math]\displaystyle{ \iint \, }[/math] | [math]\displaystyle{ \underbrace{- \rho \left( \frac{\partial\phi_I}{\partial t} + g y \right)} }[/math] | [math]\displaystyle{ \hat{n} dS \leftarrow \, }[/math] | can calculate knowing (incident) wave kinematics (and body geometry) |
body surface | [math]\displaystyle{ \equiv p_I \, }[/math] |
- Mathematical approximation After applying the divergence theorem, the [math]\displaystyle{ \vec{F}_{FK} \, }[/math] can be rewritten as [math]\displaystyle{ \vec{F}_{FK} = - \iint_{\mbox{body surface}} p_I \hat{n} dS = - \iiint_{\mbox{body volume}} \nabla p_I d\forall }[/math].
If the body dimensions are very small comparable to the wave length, we can assume that [math]\displaystyle{ \nabla_{p_I} \, }[/math] is approximately constant through the body volume [math]\displaystyle{ \forall \, }[/math] and 'pull' the [math]\displaystyle{ \nabla_{p_I} \, }[/math] out of the integral. Thus, the [math]\displaystyle{ \vec{F}_{FK} \, }[/math] can be approximated as
The last relation is particularly useful for small bodies of non-trivial geometry for 13.021, that is all bodies that do not have a rectangular cross section.
(b) Diffraction and Radiation Forces
(b.1) Diffraction or scattering force When [math]\displaystyle{ \ell \not\ll \lambda \, }[/math], the wave field near the body will be affected even if the body is stationary, so that no-flux B.C. is satisfied.
(b.2) Radiation Force -added mass and damping coefficient Even in the absence of an incident wave, a body in motion creates waves and hence inertial wave forces.
[math]\displaystyle{ \vec{F}_R = \, }[/math] | [math]\displaystyle{ \iint - \rho \left( \frac{\partial\phi_R}{\partial t} \right) \hat{n} dS = - }[/math] | [math]\displaystyle{ \underbrace{m_{ij}} \, }[/math] | [math]\displaystyle{ \dot{U}_j \ - \, }[/math] | [math]\displaystyle{ \underbrace{d_{ij}} \, }[/math] | [math]\displaystyle{ U_j \, }[/math] |
body surface | added mass | wave radiation damping |