Difference between revisions of "Graf's Addition Theorem"
Tim.williams (talk | contribs) m (just wanted to make explanation a bit clearer) |
|||
Line 33: | Line 33: | ||
[[Category:Numerical Methods]] | [[Category:Numerical Methods]] | ||
− | [[Category: | + | [[Category:Interaction Theory]] |
Revision as of 23:16, 5 July 2008
Graf's addition theorem for Bessel functions is given in Abramowitz and Stegun 1964. It is a special case of a general addition theorem called Neumann's addition theorem. Details can be found Abramowitz and Stegun 1964 online. We express the theorem in the following form
where [math]\displaystyle{ C_\nu }[/math] can represent any of the Bessel functions [math]\displaystyle{ J_\nu }[/math], [math]\displaystyle{ I_\nu }[/math], [math]\displaystyle{ Y_\nu }[/math], [math]\displaystyle{ K_\nu }[/math], [math]\displaystyle{ H_\nu^{(1)} }[/math], and [math]\displaystyle{ H_\nu^{(2)} }[/math], [math]\displaystyle{ (r_j,\theta_j) }[/math] and [math]\displaystyle{ (r_l,\theta_l) }[/math] are polar coordinates centred at two different positions with global coordinates [math]\displaystyle{ \boldsymbol{O}_j }[/math], [math]\displaystyle{ \boldsymbol{O}_l }[/math], and [math]\displaystyle{ (R_{jl},\vartheta_{jl}) }[/math] are the polar coordinates of [math]\displaystyle{ \boldsymbol{O}_l }[/math] with respect to [math]\displaystyle{ \boldsymbol{O}_j }[/math]. This expression is valid only provided that [math]\displaystyle{ r_l \lt R_{jl} }[/math] ( although this restriction is unnecessary if [math]\displaystyle{ C=J }[/math] and [math]\displaystyle{ \nu }[/math] is an integer).
Explicit versions of the theorem are given below,
This theorem form the basis for Kagemoto and Yue Interaction Theory.