|
|
Line 205: |
Line 205: |
| <center><math> | | <center><math> |
| \begin{matrix} | | \begin{matrix} |
− | \xi_3 & = & | + | \xi_3 & = & \Im |
− | \Im\left\{\frac{\beta_\Lambda}{\alpha}\left[i\kappa^I_{\Lambda} (k^I_\Lambda)^2\left((\kappa^I_{\Lambda})^2 + 2k_y^2 \right) | + | \left\{\frac{\beta_\Lambda}{\alpha}\left[i\kappa^I_{\Lambda} (k^I_\Lambda)^2\left((\kappa^I_{\Lambda})^2 + 2k_y^2 \right) |
− | \tanh^2{(k^I_\Lambda h)}|T_\Lambda(0)|^2\right] \\ | + | \tanh^2{(k^I_\Lambda h)}|T_\Lambda(0)|^2\right] |
− | &&-\frac{\beta_1}{\alpha}\left[i\kappa^I_{1}(k^I_1)^2\left((\kappa^I_{1})^2 + 2k_y^2\right)\tanh^2{(k^I_1h)}
| + | -\frac{\beta_1}{\alpha}\left[i\kappa^I_{1}(k^I_1)^2\left((\kappa^I_{1})^2 + 2k_y^2\right)\tanh^2{(k^I_1h)} |
− | \left(1 - |R_1(0)|^2\right)\right] \\ | + | \left(1 - |R_1(0)|^2\right)\right] |
− | &&-\frac{\beta_\Lambda}{\alpha}\left[-i(\kappa^I_{\Lambda})^3(k^I_\Lambda)^2\tanh^2{(k^I_\Lambda h)}|T_\Lambda(0)|^2\right] \\
| + | -\frac{\beta_\Lambda}{\alpha}\left[-i(\kappa^I_{\Lambda})^3(k^I_\Lambda)^2\tanh^2{(k^I_\Lambda h)}|T_\Lambda(0)|^2\right] |
− | &&+\frac{\beta_1}{\alpha}\left[-i(\kappa^I_{1})^3(k^I_1)^2\tanh^2{(k^I_1h)} \left(1 - |R_1(0)|^2\right)\right]\right\} \\ \\
| + | +\frac{\beta_1}{\alpha}\left[-i(\kappa^I_{1})^3(k^I_1)^2\tanh^2{(k^I_1h)} \left(1 - |R_1(0)|^2\right)\right]\right\}, \\ \\ |
− | &=&\frac{\beta_\Lambda}{\alpha}\left[2\kappa^I_{\Lambda} (k^I_\Lambda)^2((\kappa^I_{\Lambda})^2 + k_y^2)\tanh^2{(k^I_\Lambda h)}|T_\Lambda(0)|^2\right] \\ | + | & = & \frac{\beta_\Lambda}{\alpha}\left[2\kappa^I_{\Lambda} (k^I_\Lambda)^2((\kappa^I_{\Lambda})^2 + k_y^2)\tanh^2{(k^I_\Lambda h)}|T_\Lambda(0)|^2\right] |
− | &&-\frac{\beta_1}{\alpha}\left[2\kappa^I_{1}(k^I_1)^2((\kappa^I_{1})^2 + k_y^2)\tanh^2{(k^I_1h)}(1-|R_1(0)|^2)\right] .
| + | -\frac{\beta_1}{\alpha}\left[2\kappa^I_{1}(k^I_1)^2((\kappa^I_{1})^2 + k_y^2)\tanh^2{(k^I_1h)}(1-|R_1(0)|^2)\right]. |
| \end{matrix} | | \end{matrix} |
| </math></center> | | </math></center> |
Revision as of 03:52, 9 July 2008
Based on the method used in Evans and Davies 1968, a check can be made to ensure the solutions of the floating plate problem are in energy balance.
This is simply a condition that the incident energy is equal to the sum of the radiated energy.
When the first and final plates have different properties, the energy balance equation is derived by applying Green's theorem to [math]\displaystyle{ \phi }[/math] and its conjugate Evans and Davies 1968.
We set up the problem as given in Figure 256
\begin{figure}[H]
\begin{center}
\includegraphics[width=.8\textwidth]{Figures/EnergyBalanceTricks}
\end{center}
\caption[A diagram depicting the area [math]\displaystyle{ \mathcal{U} }[/math] which is bounded by the rectangle [math]\displaystyle{ \mathcal{S} }[/math].]
{A diagram depicting the area [math]\displaystyle{ \mathcal{U} }[/math] which is bounded by the rectangle [math]\displaystyle{ \mathcal{S} }[/math].
The rectangle [math]\displaystyle{ \mathcal{S} }[/math] is bounded by [math]\displaystyle{ -h\leq z \leq0 }[/math] and [math]\displaystyle{ -\infty\leq x \leq \infty }[/math].}
(256)
\end{figure}
Applying Green's theorem to [math]\displaystyle{ \phi }[/math] and its conjugate [math]\displaystyle{ \phi^* }[/math] gives
[math]\displaystyle{ (257)
{ \int\int_\mathcal{U}(\phi\nabla^2\phi^* - \phi^*\nabla^2\phi)dxdz
= \int_\mathcal{S}(\phi\frac{\partial\phi^*}{\partial n} - \phi^*\frac{\partial\phi}{\partial n})dl },
}[/math]
where [math]\displaystyle{ n }[/math] denotes the outward plane normal to the boundary and [math]\displaystyle{ l }[/math] denotes the plane parallel to the boundary.
As [math]\displaystyle{ \phi }[/math] and [math]\displaystyle{ \phi^* }[/math] satisfy the Laplace's equation, the left hand side of the Green theorem equation vanishes so that it reduces to
[math]\displaystyle{
\Im\int_\mathcal{S}\phi\frac{\partial\phi^*}{\partial n} dl = 0,
}[/math]
Expanding gives
[math]\displaystyle{
\xi_1 +\xi_2 + \xi_3 = 0,
}[/math]
where
[math]\displaystyle{
\xi_1 =
{ \Im\int_{-\infty}^{\infty}(\phi\frac{\partial\phi^*}{\partial z})\big|_{z=0}dx },
}[/math]
[math]\displaystyle{
\xi_2 =
{ \Im\int_{-h}^0(\phi\frac{\partial\phi^*}{\partial x})\big|_{x=\infty}dz },
}[/math]
and
[math]\displaystyle{
\xi_3 =
{ - \Im\int_{-h}^0(\phi\frac{\partial\phi^*}{\partial x})\big|_{x=-\infty}dz } = 0 ,
}[/math]
where [math]\displaystyle{ \Im }[/math] denotes the imaginary part. The bottom domain composant is obviously equal to zero because of the no-influx condition over the seabed ([math]\displaystyle{ \frac{\partial\phi^*}{\partial z}\big|_{z=-h}=0 }[/math]).
Expanding [math]\displaystyle{ \mathbf{\xi_1} }[/math]
Near [math]\displaystyle{ x=-\infty }[/math], we approximate [math]\displaystyle{ \phi }[/math] by
[math]\displaystyle{
\phi \approx e^{-\kappa_{1}(0)(x)}\frac{\cos{(k_1(0)(z+h))}}{\cos{(k_1(0)h)}} +
R_1(0)e^{\kappa_{1}(0)(x)}\frac{\cos{(k_{1}(0)(z+h))}}{\cos{(k_{1}(0)h)}}.
}[/math]
To simplify the derivation, we re-express the previous expression as
[math]\displaystyle{
\phi \approx \left(e^{-i\kappa^I_1(x)}+ R_1(0)e^{i\kappa^I_1(x)}\right)\frac{\cosh{(k^I_1(z+h))}}{\cosh{(k^I_1h)}},
}[/math]
where [math]\displaystyle{ k^I_1 = -\Im k_{1}(0) }[/math] and [math]\displaystyle{ \kappa^I_1=-\Im \kappa_1(0) }[/math], so that
[math]\displaystyle{
\frac{\partial\phi}{\partial x} \approx \left(-i\kappa^{I}_1e^{-i\kappa^{I}_1(x)}
+ i\kappa^{I}_1R_1(0)e^{i\kappa^{I}_1(x)}\right)\frac{\cosh{(k^I_1(z+h))}}{\cosh{(k^I_1h)}}.
}[/math]
Therefore,
[math]\displaystyle{
\begin{matrix}
\xi_1 & = & {\Im\int_{-h}^0 \left[\left(e^{-i\kappa^{I}_1(x-r_1)}+ R_1(0)e^{i\kappa^{I}_1(x-r_1)}\right)\right.}
{ \left(i\kappa^{I}_1e^{i\kappa^{I}_1(x-r_1)} - i\kappa^{I}_1R_1(0)^*e^{-i\kappa^{I}_1(x-r_1)}\right) }
{ \left.\left(\frac{\cosh^2{(k^I_1(z+h))}}{\cosh^2{(k^I_1h)}}\right)\right]dz, }\\ \\
& = & { \Im\left[\frac{i\kappa^{I}_1\left(1 - |R_1(0)|^2\right)}{2\cosh^2{(k^I_1h)}}
\int_{-h}^0 \left(\cosh{(2k^I_1(z+h))+1}\right)dz\right] ,}\\ \\
& = & { \Im\left[\frac{i\kappa^{I}_1\left(1 - |R_1(0)|^2\right)}{2\cosh^2{(k^I_1h)}}
\left[\frac{1}{2k^I_1}\sinh{(2k^I_1(z+h))} + z\right]_{-h}^0\right], }\\ \\
& = & { \frac{\kappa^{I}_1\left(1 - |R_1(0)|^2\right)}{2\cosh^2{(k^I_1h)}} \left(\frac{1}{2k^I_1}\sinh{(2k^I_1h))} + h\right) ,}\\ \\
& = & { \frac{\kappa^{I}_1\left(1 - |R_1(0)|^2\right)}{2k^I_1}\left(\tanh{(k^I_1h)}+\frac{hk^I_1}{\cosh^2{(k^I_1h)}}\right) , }
\end{matrix}
}[/math]
where [math]\displaystyle{ R_1(0)^* }[/math] is the conjugate of [math]\displaystyle{ R_1(0) }[/math].
Expanding [math]\displaystyle{ \mathbf{\xi_2} }[/math]
Near [math]\displaystyle{ x=\infty }[/math], we approximate [math]\displaystyle{ \phi }[/math] by
[math]\displaystyle{
\begin{matrix}
{ \phi \approx T_\Lambda(0)e^{-\kappa_{\Lambda}(0)(x)}\frac{\cos{(k_\Lambda(0)(z+h))}}{\cos{(k_\Lambda(0)h)}}, }
\end{matrix}
}[/math]
and re-express as
[math]\displaystyle{
\phi \approx T_\Lambda(0)e^{-i\kappa^I_\Lambda(x)}\frac{\cosh{(k^I_\Lambda(z+h))}}{\cosh{(k^I_\Lambda h)}},
}[/math]
where [math]\displaystyle{ k^I_\Lambda = -\Im k_{\Lambda}(0) }[/math] and [math]\displaystyle{ \kappa^I_\Lambda=-\Im \kappa_\Lambda(0) }[/math], so that
[math]\displaystyle{
\frac{\partial\phi}{\partial x} \approx -i\kappa^I_{\Lambda}T_\Lambda(0)e^{-i\kappa^I_{\Lambda}(x)}\frac{\cosh{(k^I_\Lambda(z+h))}}{\cosh{(k^I_\Lambda h)}}.
}[/math]
Therefore,
[math]\displaystyle{
\begin{matrix}
\xi_2 & = & \Im\int_{-h}^0 \left[\right.(T_\Lambda(0)e^{-i\kappa^I_{\Lambda}(x)})(i\kappa^I_{\Lambda}T_\Lambda(0)^*e^{-i\kappa^I_{\Lambda}(x)})
\frac{\cosh^2{(k^I_\Lambda(z+h))}}{\cosh^2{(k^I_\Lambda h)}}\left.\right]dz, \\ \\
& = & { \frac{\kappa^I_{\Lambda}|T_\Lambda(0)|^2}{2\cosh^2{(k^I_\Lambda h)}}
\left(\frac{1}{2k^I_\Lambda}\sinh{(2k^I_\Lambda h)} + h\right)},\\ \\
& = & { \frac{\kappa^I_{\Lambda}|T_\Lambda(0)|^2}{2k^I_\Lambda}\left(\tanh{(k^I_\Lambda h)}+\frac{k^I_\Lambda h}{\cosh^2{(k^I_\Lambda h)}}\right)}.
\end{matrix}
}[/math]
Expanding [math]\displaystyle{ \mathbf{\xi_3} }[/math]
The ice-covered boundary condition for the Floating Elastic Plate gives
[math]\displaystyle{
\xi_3 = { \Im\int_{-\infty}^{\infty}\left(\frac{\beta}{\alpha}
\left(\frac{\partial^2}{\partial x^2} - k_y^2\right)^2 - \gamma + \frac{1}{\alpha}\right)
\frac{\partial\phi}{\partial z}\cdot\frac{\partial\phi^*}{\partial z}\bigg|_{z=0}dx.}
}[/math]
Since [math]\displaystyle{ {\frac{\partial\phi}{\partial z}\cdot\frac{\partial\phi^*}{\partial z}} }[/math] is real,
[math]\displaystyle{
\xi_3 = \Im\int_{-\infty}^{\infty}\left(\frac{\beta}{\alpha}\frac{\partial^2}{\partial x^2}
\left(\frac{\partial^2}{\partial x^2} - 2k_y^2\right)^2 \right)
\frac{\partial\phi}{\partial z}\cdot\frac{\partial\phi^*}{\partial z}\bigg|_{z=0}dx.
}[/math]
Integration by parts gives
[math]\displaystyle{
\xi_3 = \Im\left\{\left[\frac{\beta}{\alpha}\frac{\partial}{\partial x}
\left(\frac{\partial^2}{\partial x^2}-2k_y^2\right)
\frac{\partial\phi}{\partial z}\cdot\frac{\partial\phi^*}{\partial z}\right]_{-\infty}^{\infty}
-\int_{-\infty}^{\infty}\frac{\beta}{\alpha}\frac{\partial}{\partial x}
\left(\frac{\partial^2}{\partial x^2} - 2k_y^2\right)
\frac{\partial\phi}{\partial z}\cdot\frac
{\partial}{\partial x}\frac{\partial\phi^*}{\partial z}dx
\right\}.
}[/math]
As [math]\displaystyle{ {2k_y^2\frac{\partial}{\partial x}\frac{\partial\phi}{\partial z}\cdot \frac{\partial}{\partial x}\frac{\partial\phi^*}{\partial z}} }[/math] is real and by integration by parts, the expression of [math]\displaystyle{ \xi_3 }[/math] becomes,
[math]\displaystyle{
\xi_3 =\Im\left\{
\left[\frac{\beta}{\alpha}\frac{\partial}{\partial x}
\left(\frac{\partial^2}{\partial x^2}-2k_y^2\right)
\frac{\partial\phi}{\partial z}\cdot\frac{\partial\phi^*}{\partial z}\right]_{-\infty}^{\infty}
- \left[\frac{\beta}{\alpha}\frac{\partial^2}{\partial x^2}\frac{\partial\phi}{\partial z}\cdot
\frac{\partial}{\partial x}\frac{\partial\phi^*}{\partial z}\right]_{-\infty}^{\infty}
+ \int_{-\infty}^\infty\frac{\beta}{\alpha}\frac{\partial^2}{\partial x^2}\frac{\partial\phi}{\partial z}\cdot
\frac{\partial^2}{\partial x^2}\frac{\partial\phi^*}{\partial z}dx\right\}.
}[/math]
As [math]\displaystyle{ {\frac{\partial^2}{\partial x^2}\frac{\partial\phi}{\partial z}\cdot \frac{\partial^2}{\partial x^2}\frac{\partial\phi^*}{\partial z}} }[/math] is real, we obtain the new expression of [math]\displaystyle{ \xi_3 }[/math]
[math]\displaystyle{
\xi_3 = \Im\left\{
\left[\frac{\beta}{\alpha}\frac{\partial}{\partial x}
\left(\frac{\partial^2}{\partial x^2}-2k_y^2\right)
\frac{\partial\phi}{\partial z}\cdot\frac{\partial\phi^*}{\partial z}\right]_{-\infty}^{\infty}-
\left[\frac{\beta}{\alpha}\frac{\partial^2}{\partial x^2}\frac{\partial\phi}{\partial z}\cdot
\frac{\partial}{\partial x}\frac{\partial\phi^*}{\partial z}\right]_{-\infty}^{\infty}\right\}.
}[/math]
Now breaking [math]\displaystyle{ \xi_3 }[/math] down, we can simplify the left hend term for [math]\displaystyle{ x\gt 0 }[/math]
[math]\displaystyle{
\begin{matrix}
\frac{\partial}{\partial x}\left(\frac{\partial^2}{\partial x^2}-2k_y^2\right)
\frac{\partial\phi(x_2,0)}{\partial z}\cdot\frac{\partial\phi(x_2,0)^*}{\partial z} \\ \\
= \left((-i\kappa^I_{\Lambda})^3k^I_\Lambda T_\Lambda(0)e^{-i\kappa^I_{\Lambda}(x)}\tanh{(k^I_\Lambda h)}\right.
\left.- 2k_y^2(-i\kappa_{\Lambda}(0))k^I_\Lambda T_\Lambda(0)e^{-i\kappa^I_{\Lambda}(x)} \tanh{(k^I_\Lambda h)}\right)
\left(k^I_\Lambda T_\Lambda(0)^*e^{i\kappa^I_{\Lambda}(x)}\tanh{(k^I_\Lambda h)}\right), \\ \\
= i\kappa^I_{\Lambda} (k^I_\Lambda)^2\left((\kappa^I_{\Lambda})^2 + 2k_y^2 \right) \tanh^2{(k^I_\Lambda h)}|T_\Lambda(0)|^2,
\end{matrix}
}[/math]
and for [math]\displaystyle{ x\lt 0 }[/math]
[math]\displaystyle{
\begin{matrix}
\frac{\partial}{\partial x}\left(\frac{\partial^2}{\partial x^2}-2k_y^2\right)\frac{\partial\phi(x_1,0)}{\partial z}\cdot
\frac{\partial\phi(x_1,0)^*}{\partial z} \\ \\
= \left[i(\kappa^I_{1})^3k^I_1\left(e^{-i\kappa^I_{1}(x)}-R_1(0)e^{i\kappa^I_{1}(x)}\right) \tanh{(k^I_1 h)}
- 2ik_y^2\kappa^I_{1}k^I_1\left(-e^{-i\kappa^I_{1}(x)} + R_1(0)e^{i\kappa^I_{1}(x)}\right) \tanh{(k^I_1h)}\right]
\left[k^I_1\left(e^{i\kappa^I_{1}(x)} + R_1(0)^*e^{-i\kappa^I_{1}(x))}\right) \tanh{(k^I_1h)}\right], \\ \\
= \left[i\kappa^I_{1}k_1(0)((\kappa^I_{1})^2 + 2k_y^2)\left(e^{-i\kappa^I_{1}(x)} - R_1(0)e^{i\kappa^I_{1}(x)}\right)
\tanh{(k^I_1h)}\right]
\left[k^I_1\left(e^{i\kappa^I_{1}(x)} + R_1(0)^*e^{-i\kappa^I_{1}(x))}\right) \tanh{(k^I_1h)}\right], \\ \\
= i\kappa^I_{1}(k^I_1)^2\left((\kappa^I_{1})^2 + 2k_y^2\right)\tanh^2{(k^I_1h)}\left(1 - |R_1(0)|^2\right),
\end{matrix}
}[/math]
Likewise we expand the right hend term for [math]\displaystyle{ x\gt 0 }[/math]
[math]\displaystyle{
\begin{matrix}
\frac{\partial^2}{\partial x^2}\frac{\partial\phi(x_2,0)}{\partial z}\cdot
\frac{\partial}{\partial x}\frac{\partial\phi^*}{\partial z} \\ \\
= \left[-(\kappa^I_{\Lambda})^2k^I_\Lambda T_\Lambda(0)e^{-i\kappa^I_{\Lambda}(x)} \tanh{(k^I_\Lambda h)}\right]
\left[i\kappa^I_{\Lambda} k^I_\Lambda T_\Lambda(0)^*e^{i\kappa^I_{\Lambda}(x)} \tanh{(k^I_\Lambda h)}\right], \\ \\
= -i(\kappa^I_{\Lambda})^3(k^I_\Lambda)^2\tanh^2{(k^I_\Lambda h)}|T_\Lambda(0)|^2,
\end{matrix}
}[/math]
and finally for [math]\displaystyle{ x\lt 0 }[/math],
[math]\displaystyle{
\begin{matrix}
\frac{\partial^2}{\partial x^1}\frac{\partial\phi(x_1,0)}{\partial z}\cdot
\frac{\partial}{\partial x}\frac{\partial\phi^*}{\partial z}\\ \\
= \left[-(\kappa^I_{1})^2k^I_1\left(e^{-i\kappa^I_{1}(x)} + R_1(0)e^{i\kappa^I_{1}(x)}\right)\tanh{(k^I_1 h)}\right]
\left[i\kappa^I_{1} k^I_1\left(e^{i\kappa^I_{1}(x)} - R_1(0)e^{-i\kappa^I_{1}(x)}\right)\tanh{(k^I_1 h)}\right], \\ \\
= -i(\kappa^I_{1})^3(k^I_1)^2\tanh^2{(k^I_1h)}\left(1 - |R_1(0)|^2\right).
\end{matrix}
}[/math]
We can now express [math]\displaystyle{ \xi_3 }[/math] as
[math]\displaystyle{
\begin{matrix}
\xi_3 & = & \Im
\left\{\frac{\beta_\Lambda}{\alpha}\left[i\kappa^I_{\Lambda} (k^I_\Lambda)^2\left((\kappa^I_{\Lambda})^2 + 2k_y^2 \right)
\tanh^2{(k^I_\Lambda h)}|T_\Lambda(0)|^2\right]
-\frac{\beta_1}{\alpha}\left[i\kappa^I_{1}(k^I_1)^2\left((\kappa^I_{1})^2 + 2k_y^2\right)\tanh^2{(k^I_1h)}
\left(1 - |R_1(0)|^2\right)\right]
-\frac{\beta_\Lambda}{\alpha}\left[-i(\kappa^I_{\Lambda})^3(k^I_\Lambda)^2\tanh^2{(k^I_\Lambda h)}|T_\Lambda(0)|^2\right]
+\frac{\beta_1}{\alpha}\left[-i(\kappa^I_{1})^3(k^I_1)^2\tanh^2{(k^I_1h)} \left(1 - |R_1(0)|^2\right)\right]\right\}, \\ \\
& = & \frac{\beta_\Lambda}{\alpha}\left[2\kappa^I_{\Lambda} (k^I_\Lambda)^2((\kappa^I_{\Lambda})^2 + k_y^2)\tanh^2{(k^I_\Lambda h)}|T_\Lambda(0)|^2\right]
-\frac{\beta_1}{\alpha}\left[2\kappa^I_{1}(k^I_1)^2((\kappa^I_{1})^2 + k_y^2)\tanh^2{(k^I_1h)}(1-|R_1(0)|^2)\right].
\end{matrix}
}[/math]
Solving the Energy Balance Equation
Pulling it all together, \eqref{Eqn:EnergyPhi} becomes
[math]\displaystyle{
\frac{\beta_\Lambda}{\alpha}\left[2\kappa^I_{\Lambda}(k^I_\Lambda)^2((\kappa^I_{\Lambda})^2 +k_y^2)\tanh^2{(k^I_\Lambda h)}|T_\Lambda(0)|^2\right]\\
-\frac{\beta_1}{\alpha}\left[2\kappa^I_{1}(k^I_1)^2((\kappa^I_{1})^2 +k_y^2)\tanh^2{(k^I_1h)}(1-|R_1(0)|^2)\right]\\
+ \frac{\kappa^I_{\Lambda}|T_\Lambda(0)|^2}{2k^I_\Lambda}\left(\tanh{(k^I_\Lambda h)}+\frac{k^I_\Lambda h}{\cosh^2{(k^I_\Lambda h)}}\right)\\
- \frac{\kappa^I_{1}\left(1 - |R_1(0)|^2\right)}{2k^I_1}\left(\tanh{(k^I_1h)}+\frac{hk^I_1}{\cosh^2{(k^I_1h)}}\right)=0.
\end{multline*}
Re-arranging gives
\begin{multline*}
\kappa^I_{\Lambda}\tanh{(k^I_\Lambda h)}
\left(\frac{\beta_\Lambda}{\alpha}2(k^I_\Lambda)^2((\kappa^I_{\Lambda})^2 +k_y^2)\tanh{(k^I_\Lambda h)}\right. \\
\left.+ \frac{1}{2k^I_\Lambda}+\frac{h}{2\sinh{(k^I_\Lambda h)}\cosh{(k^I_\Lambda h)}}\right)|T_\Lambda(0)|^2
\end{multline*}
\begin{multline*}
\quad - \kappa^I_{1}\tanh{(k^I_1 h)}
\left(\frac{\beta_1}{\alpha}2(k^I_1)^2((\kappa^I_{1})^2 +k_y^2)\tanh{(k^I_1 h)}\right. \\
\left.+ \frac{1}{2it}+\frac{h}{2\sinh{(k^I_1 h)}\cosh{(k^I_1 h)}}\right)(1-|R_1(0)|^2)=0
}[/math]
which can be expressed as
[math]\displaystyle{
D |T_{\Lambda}(0)|^2 + |R_{1}(0)|^2 = 1,
}[/math]
where [math]\displaystyle{ D }[/math] is given by
[math]\displaystyle{
D = \left(\frac{\kappa^I_{\Lambda} k^I_1\cosh^2{(k^I_1h)}}{\kappa^I_{1}k^I_\Lambda\cosh^2{(k^I_\Lambda h)}}\right)
\left(\frac{\frac{\beta_\Lambda}{\alpha}4(k^I_\Lambda)^3((\kappa^I_{\Lambda})^2 +k_y^2)\sinh^2{(k^I_\Lambda h)} +
\frac{1}{2}{\sinh{(2k^I_\Lambda h)}}+k^I_\Lambda h}
{\frac{\beta_1}{\alpha}4(k^I_1)^3((\kappa^I_{1})^2 +k_y^2)\sinh^2{(k^I_1h)} +
\frac{1}{2}{\sinh{(2k^I_1h)}}+k^I_1h}\right)
}[/math]