Difference between revisions of "Template:Separation of variables for a free surface"
Line 1: | Line 1: | ||
== Separation of variables for a free surface == | == Separation of variables for a free surface == | ||
− | The equation | + | The separation of variables equation for a free surface is |
<center> | <center> | ||
<math> | <math> | ||
Line 55: | Line 55: | ||
</math> | </math> | ||
</center>. | </center>. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Revision as of 08:33, 25 August 2008
Separation of variables for a free surface
The separation of variables equation for a free surface is
[math]\displaystyle{ - \frac{1}{Z(z)} \frac{\mathrm{d}^2 Z}{\mathrm{d} z^2} = \eta^2. }[/math]
subject to the boundary conditions
[math]\displaystyle{ \frac{dZ}{dz}(-h) = 0 }[/math]
and
[math]\displaystyle{ \frac{dZ}{dz}(0) = \alpha Z(0) }[/math]
We then use the boundary condition at [math]\displaystyle{ z=-h }[/math] to write
[math]\displaystyle{ Z = \frac{\cos k(z+h)}{\cos kh} }[/math]
The boundary condition at the free surface ([math]\displaystyle{ z=0 }[/math]) is
which is the Dispersion Relation for a Free Surface We denote the positive imaginary solution of this equation by [math]\displaystyle{ k_{0} }[/math] and the positive real solutions by [math]\displaystyle{ k_{m} }[/math], [math]\displaystyle{ m\geq1 }[/math]. We define
[math]\displaystyle{ \phi_{m}\left( z\right) =\frac{\cos k_{m}(z+h)}{\cos k_{m}h},\quad m\geq0 }[/math]
as the vertical eigenfunction of the potential in the open water region. From Sturm-Liouville theory the vertical eigenfunctions are orthogonal. They can be normalised to be orthonormal, but this has no advantages for a numerical implementation. It can be shown that
[math]\displaystyle{ \int\nolimits_{-h}^{0}\phi_{m}(z)\phi_{n}(z) d z=A_{n}\delta_{mn} }[/math]
where
[math]\displaystyle{ A_{n}=\frac{1}{2}\left( \frac{\cos k_{n}h\sin k_{m}h+k_{n}h}{k_{n}\cos ^{2}k_{n}h}\right) }[/math]
.