Difference between revisions of "Template:Separation of variables for a free surface"

From WikiWaves
Jump to navigationJump to search
Line 1: Line 1:
 
== Separation of variables for a free surface ==  
 
== Separation of variables for a free surface ==  
  
The equation  
+
The separation of variables equation for a free surface is
 
<center>
 
<center>
 
<math>
 
<math>
Line 55: Line 55:
 
</math>
 
</math>
 
</center>.
 
</center>.
 
The equation
 
<center>
 
<math>
 
- \frac{1}{Z(z)}
 
\frac{\mathrm{d}^2 Z}{\mathrm{d} z^2} = \eta^2.
 
</math>
 
</center>
 
is the equation for separation of variables for a free surface.
 
In the setting of water of finite depth, the general solution 
 
<math>Z(z)</math> can be written as
 
<center>
 
<math>
 
Z(z) = F \cos \big( \eta (z+d) \big) + G \sin \big( \eta (z+d) \big),
 
\quad \eta \in \mathbb{C} \backslash \{ 0 \},
 
</math>
 
</center>
 
since <math>\eta = 0</math> is not an eigenvalue.
 
To satisfy the bed condition, <math>G</math> must be <math>0</math>.
 
<math>Z(z)</math> satisfies the free surface condition, provided the separation
 
constants <math>\eta</math> are roots of the equation
 
<center>
 
<math>
 
- F \eta \sin \big( \eta (z+d) \big) - \alpha F \cos \big( \eta (z+d)
 
  \big) = 0, \quad z=0,
 
</math>
 
</center>
 
or, equivalently, if they satisfy the [[Dispersion Relation for a Free Surface]]
 
<center><math>
 
\alpha + \eta \tan \eta d = 0\,.
 
</math></center>
 
This equation has an
 
infinite number of real roots, denoted by <math>k_m</math> and <math>-k_m</math> (<math>m \geq
 
1</math>), but the negative roots produce the same eigenfunctions as the
 
positive ones and will therefore not be considered. It also has a pair of purely imaginary roots which
 
will be denoted by <math>k_0</math>. Writing <math>k_0 = - \mathrm{i} k</math>, <math>k</math> is the
 
(positive) root of the [[Dispersion Relation for a Free Surface]]
 
<center><math>
 
\alpha = k \tanh k d,\,
 
</math></center>
 
again it suffices to consider only the positive root of this equation. The solutions can
 
therefore be written as
 
<center>
 
<math>
 
Z_m(z) = F_m \cos \big( k_m (z+d) \big), \quad m \geq 0.
 
</math>
 
</center>
 
It follows that <math>k</math> is the previously introduced wavenumber and the [[Dispersion Relation for a Free Surface]]
 
gives the required relation between the radian frequency and the wavenumber.
 

Revision as of 08:33, 25 August 2008

Separation of variables for a free surface

The separation of variables equation for a free surface is

[math]\displaystyle{ - \frac{1}{Z(z)} \frac{\mathrm{d}^2 Z}{\mathrm{d} z^2} = \eta^2. }[/math]

subject to the boundary conditions

[math]\displaystyle{ \frac{dZ}{dz}(-h) = 0 }[/math]

and

[math]\displaystyle{ \frac{dZ}{dz}(0) = \alpha Z(0) }[/math]

We then use the boundary condition at [math]\displaystyle{ z=-h }[/math] to write

[math]\displaystyle{ Z = \frac{\cos k(z+h)}{\cos kh} }[/math]

The boundary condition at the free surface ([math]\displaystyle{ z=0 }[/math]) is

[math]\displaystyle{ k\tan\left( kh\right) =-\alpha, }[/math]

which is the Dispersion Relation for a Free Surface We denote the positive imaginary solution of this equation by [math]\displaystyle{ k_{0} }[/math] and the positive real solutions by [math]\displaystyle{ k_{m} }[/math], [math]\displaystyle{ m\geq1 }[/math]. We define

[math]\displaystyle{ \phi_{m}\left( z\right) =\frac{\cos k_{m}(z+h)}{\cos k_{m}h},\quad m\geq0 }[/math]

as the vertical eigenfunction of the potential in the open water region. From Sturm-Liouville theory the vertical eigenfunctions are orthogonal. They can be normalised to be orthonormal, but this has no advantages for a numerical implementation. It can be shown that

[math]\displaystyle{ \int\nolimits_{-h}^{0}\phi_{m}(z)\phi_{n}(z) d z=A_{n}\delta_{mn} }[/math]

where

[math]\displaystyle{ A_{n}=\frac{1}{2}\left( \frac{\cos k_{n}h\sin k_{m}h+k_{n}h}{k_{n}\cos ^{2}k_{n}h}\right) }[/math]

.