Difference between revisions of "Template:Separation of variables for a dock"
From WikiWaves
Jump to navigationJump to searchLine 5: | Line 5: | ||
<center> | <center> | ||
<math> | <math> | ||
− | + | Z^{\prime\prime} + k^2 Z =0. | |
</math> | </math> | ||
</center> | </center> | ||
Line 11: | Line 11: | ||
<center> | <center> | ||
<math> | <math> | ||
− | \ | + | Z^{\prime} (-h) = 0 |
</math> | </math> | ||
</center> | </center> | ||
Line 17: | Line 17: | ||
<center> | <center> | ||
<math> | <math> | ||
− | \ | + | Z^{\prime} (0) = 0 |
</math> | </math> | ||
</center> | </center> |
Revision as of 04:31, 26 August 2008
Separation of Variables for a Dock
The separation of variables equation for a dock
[math]\displaystyle{ Z^{\prime\prime} + k^2 Z =0. }[/math]
subject to the boundary conditions
[math]\displaystyle{ Z^{\prime} (-h) = 0 }[/math]
and
[math]\displaystyle{ Z^{\prime} (0) = 0 }[/math]
The solution is [math]\displaystyle{ k=\kappa_{m}=m\pi/h }[/math], [math]\displaystyle{ m\geq 0 }[/math] and
[math]\displaystyle{ Z = \psi_{m}\left( z\right) = \cos\kappa_{m}(z+h),\quad m\geq 0 }[/math]
We note that
[math]\displaystyle{ \int\nolimits_{-h}^{0}\psi_{m}(z)\psi_{n}(z) d z=C_{m}\delta_{mn} }[/math]
where