Difference between revisions of "Template:Separation of variables for a submerged dock"
Line 33: | Line 33: | ||
depending on whether the root <math>\mu_n</math> is above or below. | depending on whether the root <math>\mu_n</math> is above or below. | ||
− | + | We define | |
− | + | <center> | |
+ | <math> | ||
+ | \int\nolimits_{-d}^{0}\phi_{n}^h(z)\chi_{m}^d(z) d z=B_{mn} | ||
+ | </math> | ||
+ | </center> | ||
+ | where <math>B_{mn}</math> is either | ||
+ | <center> | ||
+ | <math> | ||
+ | \int\nolimits_{-d}^{0}\phi_{n}^h(z)\phi_{m}^d(z) d z=B_{mn} | ||
+ | </math> | ||
+ | </center> | ||
+ | or | ||
+ | <center> | ||
+ | <math> | ||
+ | \int\nolimits_{-h}^{-d}\phi_{n}^h(z)\psi_{m}(z) d z=B_{mn} | ||
+ | </math> | ||
+ | </center> |
Revision as of 11:07, 7 September 2008
The depth above the plate is [math]\displaystyle{ d }[/math] and below the plate is [math]\displaystyle{ h-d }[/math]. We now introduce a new dispersion value [math]\displaystyle{ \mu_m }[/math] which is either [math]\displaystyle{ k_n^{d} }[/math] where [math]\displaystyle{ k_0^{d} }[/math] are the roots of the Dispersion Relation for a Free Surface with depth [math]\displaystyle{ d }[/math] for [math]\displaystyle{ 0 \leq n \leq N-M }[/math] or [math]\displaystyle{ n\pi/(h-d) }[/math] for [math]\displaystyle{ n }[/math] and integer. We also order the roots with the first the positive imaginary solution [math]\displaystyle{ k_0^{d} }[/math] and the second being zero, then order by increasing size. We then define a new function a new function
[math]\displaystyle{ \chi_n = \begin{cases} \psi_{n}(z),\,\,\,-h\lt z\lt -d \\ 0,\,\,\,-d\lt z\lt 0 \end{cases} }[/math]
or
[math]\displaystyle{ \chi_{n} = \begin{cases} 0,\,\,\,-h\lt z\lt -d \\ \phi_{n}^{d}(z),\,\,\,-d\lt z\lt 0 \end{cases} }[/math]
where
[math]\displaystyle{ \phi_{m}^{d}\left( z\right) =\frac{\cos k_{m}^{d}(z+d)}{\cos k_{m}^{d}d},\quad m\geq0 }[/math]
depending on whether the root [math]\displaystyle{ \mu_n }[/math] is above or below.
We define
[math]\displaystyle{ \int\nolimits_{-d}^{0}\phi_{n}^h(z)\chi_{m}^d(z) d z=B_{mn} }[/math]
where [math]\displaystyle{ B_{mn} }[/math] is either
[math]\displaystyle{ \int\nolimits_{-d}^{0}\phi_{n}^h(z)\phi_{m}^d(z) d z=B_{mn} }[/math]
or
[math]\displaystyle{ \int\nolimits_{-h}^{-d}\phi_{n}^h(z)\psi_{m}(z) d z=B_{mn} }[/math]