Difference between revisions of "Template:Separation of variables for a dock"
From WikiWaves
Jump to navigationJump to searchLine 5: | Line 5: | ||
<center> | <center> | ||
<math> | <math> | ||
− | Z^{\prime\prime} + k^2 Z =0 | + | Z^{\prime\prime} + k^2 Z =0, |
</math> | </math> | ||
</center> | </center> | ||
Line 11: | Line 11: | ||
<center> | <center> | ||
<math> | <math> | ||
− | Z^{\prime} (-h) = 0 | + | Z^{\prime} (-h) = 0, |
</math> | </math> | ||
</center> | </center> | ||
Line 17: | Line 17: | ||
<center> | <center> | ||
<math> | <math> | ||
− | Z^{\prime} (0) = 0 | + | Z^{\prime} (0) = 0. |
</math> | </math> | ||
</center> | </center> | ||
Line 25: | Line 25: | ||
<math> | <math> | ||
Z = \psi_{m}\left( z\right) = \cos\kappa_{m}(z+h),\quad | Z = \psi_{m}\left( z\right) = \cos\kappa_{m}(z+h),\quad | ||
− | m\geq 0 | + | m\geq 0. |
</math> | </math> | ||
</center> | </center> | ||
Line 37: | Line 37: | ||
<center> | <center> | ||
<math> | <math> | ||
− | C_{m}=\frac{1}{2}h,\quad m\neq 0 \quad \mathrm{and} \quad C_0 = h | + | C_{m}=\frac{1}{2}h,\quad m\neq 0 \quad \mathrm{and} \quad C_0 = h. |
</math></center> | </math></center> |
Revision as of 10:51, 11 September 2008
Separation of Variables for a Dock
The separation of variables equation for a dock
[math]\displaystyle{ Z^{\prime\prime} + k^2 Z =0, }[/math]
subject to the boundary conditions
[math]\displaystyle{ Z^{\prime} (-h) = 0, }[/math]
and
[math]\displaystyle{ Z^{\prime} (0) = 0. }[/math]
The solution is [math]\displaystyle{ k=\kappa_{m}=m\pi/h }[/math], [math]\displaystyle{ m\geq 0 }[/math] and
[math]\displaystyle{ Z = \psi_{m}\left( z\right) = \cos\kappa_{m}(z+h),\quad m\geq 0. }[/math]
We note that
[math]\displaystyle{ \int\nolimits_{-h}^{0}\psi_{m}(z)\psi_{n}(z) d z=C_{m}\delta_{mn} }[/math]
where