Difference between revisions of "Template:Equations for a free beam"
From WikiWaves
Jump to navigationJump to searchLine 1: | Line 1: | ||
We can find a the eigenfunction which satisfy | We can find a the eigenfunction which satisfy | ||
<center> | <center> | ||
− | <math>\partial_x^4 w_n = \lambda_n^4 w_n</math> | + | <math>\partial_x^4 w_n = \lambda_n^4 w_n |
+ | \,\,\_L \leq x \leq L | ||
+ | </math> | ||
</center> | </center> | ||
plus the edge conditions. | plus the edge conditions. | ||
<center><math>\begin{matrix} | <center><math>\begin{matrix} | ||
− | \partial_x^3 w_n= 0 \;\;\;\; \mbox{ at } z = 0 \;\;\; x = \pm | + | \partial_x^3 w_n= 0 \;\;\;\; \mbox{ at } z = 0 \;\;\; x = \pm L, |
\end{matrix}</math></center> | \end{matrix}</math></center> | ||
<center><math>\begin{matrix} | <center><math>\begin{matrix} | ||
− | \partial_x^2 w_n = 0\mbox{ for } \;\;\;\; \mbox{ at } z = 0 \;\;\; x = \pm | + | \partial_x^2 w_n = 0\mbox{ for } \;\;\;\; \mbox{ at } z = 0 \;\;\; x = \pm L |
\end{matrix}</math></center> | \end{matrix}</math></center> | ||
− |
Revision as of 08:32, 7 November 2008
We can find a the eigenfunction which satisfy
[math]\displaystyle{ \partial_x^4 w_n = \lambda_n^4 w_n \,\,\_L \leq x \leq L }[/math]
plus the edge conditions.