Difference between revisions of "Category:Linear Hydroelasticity"
From WikiWaves
Jump to navigationJump to searchMarko tomic (talk | contribs) |
Marko tomic (talk | contribs) |
||
Line 4: | Line 4: | ||
Finite Element Method (FEM) can be used to analyze any general 3D elastic structure using linear hydroelastic theory. | Finite Element Method (FEM) can be used to analyze any general 3D elastic structure using linear hydroelastic theory. | ||
+ | |||
<center> | <center> | ||
local FE <math>\Rightarrow </math> global FE model | local FE <math>\Rightarrow </math> global FE model | ||
</center> | </center> | ||
+ | |||
+ | Dynamic equation of motion in matrix form can be expressed as: | ||
+ | <center> | ||
<math> | <math> | ||
\begin{bmatrix}K\end{bmatrix}\begin{bmatrix}D\end{bmatrix}+ | \begin{bmatrix}K\end{bmatrix}\begin{bmatrix}D\end{bmatrix}+ | ||
\begin{bmatrix}S\end{bmatrix}\begin{bmatrix}\dot D\end{bmatrix}+ | \begin{bmatrix}S\end{bmatrix}\begin{bmatrix}\dot D\end{bmatrix}+ | ||
− | \begin{bmatrix}M\end{bmatrix}\begin{bmatrix}\dot\dot | + | \begin{bmatrix}M\end{bmatrix}\begin{bmatrix}\ddot D\end{bmatrix}= |
+ | \begin{bmatrix}F(t)\end{bmatrix}</math>, where:</center> | ||
+ | |||
+ | <center><math>\begin{bmatrix}K\end{bmatrix}</math> is structural stiffness matrix,</center> | ||
+ | <center><math>\begin{bmatrix}S\end{bmatrix}</math> is structural damping matrix,</center> | ||
+ | <center><math>\begin{bmatrix}M\end{bmatrix}</math> is structural mass matrix,</center> | ||
+ | <center><math>\begin{bmatrix}D\end{bmatrix}</math> is generalized nodal displacements vector,</center> | ||
+ | <center><math>\begin{bmatrix}F\end{bmatrix}</math> is loading vector.</center> | ||
+ | |||
+ | |||
+ | The eigenvalue problem for the "dry" natural vibrations yields: | ||
+ | |||
+ | <center><math>\begin{bmatrix}K\end{bmatrix}</math> is loading vector.</center> | ||
+ | |||
+ | |||
+ | Generalized nodal displacements vector can be expressed using "dry" structure natural modes: | ||
+ | |||
+ | |||
+ | <center><math>\begin{bmatrix}D\end{bmatrix}</math>=<math>\begin{bmatrix}W\end{bmatrix}\cdot\begin{bmatrix}\xi\end{bmatrix}</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\begin{bmatrix}W\end{bmatrix}</math>=<math>\begin{bmatrix}\mathbf{w_1}\,\mathbf{w_2}\,\ldots \end{bmatrix}</math> is matrix of dry natural modes, with modes being sorted column-wise,</center> | ||
+ | |||
+ | <center><math>\begin{bmatrix}\xi\end{bmatrix}</math>is natural modes coefficients vector.</center> | ||
+ | |||
+ | |||
+ | <center><math>\begin{bmatrix}W\end{bmatrix}^T \begin{bmatrix}K\end{bmatrix} \begin{bmatrix}W\end{bmatrix} | ||
+ | \begin{bmatrix}\xi\end{bmatrix}+\begin{bmatrix}W\end{bmatrix}^T \begin{bmatrix}S\end{bmatrix} \begin{bmatrix}W\end{bmatrix} | ||
+ | \begin{bmatrix}\dot\xi\end{bmatrix} | ||
+ | +\begin{bmatrix}W\end{bmatrix}^T \begin{bmatrix}M\end{bmatrix} \begin{bmatrix}W\end{bmatrix} | ||
+ | \begin{bmatrix}\ddot\xi\end{bmatrix}</math>=<math>\begin{bmatrix}W\end{bmatrix}^T\begin{bmatrix}F(t)\end{bmatrix}</math></center> | ||
+ | |||
+ | |||
+ | <center><math>\begin{bmatrix}k\end{bmatrix} \begin{bmatrix}\xi\end{bmatrix}+\begin{bmatrix}s\end{bmatrix} \begin{bmatrix}\dot\xi\end{bmatrix}+\begin{bmatrix}m\end{bmatrix} \begin{bmatrix}\ddot\xi\end{bmatrix}</math>=<math>\begin{bmatrix}f(t)\end{bmatrix}</math></center> | ||
+ | |||
+ | to be continued... |
Revision as of 07:02, 13 November 2008
Problems in Linear Water-Wave theory in which there is an elastic body.
Finite Element Method (FEM) can be used to analyze any general 3D elastic structure using linear hydroelastic theory.
local FE [math]\displaystyle{ \Rightarrow }[/math] global FE model
Dynamic equation of motion in matrix form can be expressed as:
The eigenvalue problem for the "dry" natural vibrations yields:
Generalized nodal displacements vector can be expressed using "dry" structure natural modes:
to be continued...