Difference between revisions of "Category:Linear Hydroelasticity"
Marko tomic (talk | contribs) |
Marko tomic (talk | contribs) |
||
Line 16: | Line 16: | ||
\begin{bmatrix}M\end{bmatrix}\begin{bmatrix}\ddot D\end{bmatrix}= | \begin{bmatrix}M\end{bmatrix}\begin{bmatrix}\ddot D\end{bmatrix}= | ||
\begin{bmatrix}F(t)\end{bmatrix}</math>, where:</center> | \begin{bmatrix}F(t)\end{bmatrix}</math>, where:</center> | ||
+ | |||
<center><math>\begin{bmatrix}K\end{bmatrix}</math> is structural stiffness matrix,</center> | <center><math>\begin{bmatrix}K\end{bmatrix}</math> is structural stiffness matrix,</center> | ||
Line 26: | Line 27: | ||
The eigenvalue problem for the "dry" natural vibrations yields: | The eigenvalue problem for the "dry" natural vibrations yields: | ||
− | <center><math>\begin{bmatrix}K\end{bmatrix}</math> is | + | <center><math>\begin{bmatrix}K\end{bmatrix}\begin{bmatrix}D\end{bmatrix}+\begin{bmatrix}M\end{bmatrix}\begin{bmatrix}\ddot D\end{bmatrix}=\begin{bmatrix}0\end{bmatrix}</math></center> |
+ | |||
+ | |||
+ | If one assumes trial solution as <math>\begin{bmatrix}D\end{bmatrix}=\begin{bmatrix}w\end{bmatrix}\,e^{i\omega t}</math> then the eigenvalue problem reduces to <math>\left( \begin{bmatrix}K\end{bmatrix}-\omega^2 \begin{bmatrix}M\end{bmatrix} \right )\begin{bmatrix}w\end{bmatrix}=\begin{bmatrix}0\end{bmatrix}</math>, where <math>\omega</math> is the dry natural frequency and <math>\begin{bmatrix}w\end{bmatrix}</math> is the dry natural vector. | ||
− | Generalized nodal displacements vector can be expressed using "dry" structure natural modes: | + | Generalized nodal displacements vector can be expressed using calculated "dry" structure natural modes: |
Revision as of 07:20, 13 November 2008
Problems in Linear Water-Wave theory in which there is an elastic body.
Finite Element Method (FEM) can be used to analyze any general 3D elastic structure using linear hydroelastic theory.
local FE [math]\displaystyle{ \Rightarrow }[/math] global FE model
Dynamic equation of motion in matrix form can be expressed as:
The eigenvalue problem for the "dry" natural vibrations yields:
If one assumes trial solution as [math]\displaystyle{ \begin{bmatrix}D\end{bmatrix}=\begin{bmatrix}w\end{bmatrix}\,e^{i\omega t} }[/math] then the eigenvalue problem reduces to [math]\displaystyle{ \left( \begin{bmatrix}K\end{bmatrix}-\omega^2 \begin{bmatrix}M\end{bmatrix} \right )\begin{bmatrix}w\end{bmatrix}=\begin{bmatrix}0\end{bmatrix} }[/math], where [math]\displaystyle{ \omega }[/math] is the dry natural frequency and [math]\displaystyle{ \begin{bmatrix}w\end{bmatrix} }[/math] is the dry natural vector.
Generalized nodal displacements vector can be expressed using calculated "dry" structure natural modes:
to be continued...