Difference between revisions of "Infinite Array Green Function"
m (Reverted edits by DronvArroc (DronvArroc); changed back to last version by Meylan) |
|||
(43 intermediate revisions by 4 users not shown) | |||
Line 4: | Line 4: | ||
on an infinite image system of [[Free-Surface Green Function|Free-Surface Green Functions]] | on an infinite image system of [[Free-Surface Green Function|Free-Surface Green Functions]] | ||
− | =Problem Formulation | + | =Problem Formulation= |
We begin by formulating the problem. | We begin by formulating the problem. | ||
Line 18: | Line 18: | ||
that if <math>(x,y) \in \Delta_0</math>, then <math>(x,y+ml) \in \Delta_m</math>, | that if <math>(x,y) \in \Delta_0</math>, then <math>(x,y+ml) \in \Delta_m</math>, | ||
<math>-\infty < m < \infty</math>. | <math>-\infty < m < \infty</math>. | ||
− | |||
− | |||
We assume that we have the [[Standard Linear Wave Scattering Problem]]. | We assume that we have the [[Standard Linear Wave Scattering Problem]]. | ||
− | + | The incident wave | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
potential given by | potential given by | ||
<center><math> | <center><math> | ||
\phi^{{\rm in}} = \frac{A}{k} | \phi^{{\rm in}} = \frac{A}{k} | ||
− | + | e^{ik (x\cos\theta+y\sin\theta)}\,e^{kz}, | |
− | |||
</math></center> | </math></center> | ||
where <math>A</math> is the dimensionless amplitude and <math>\theta</math> is the direction of | where <math>A</math> is the dimensionless amplitude and <math>\theta</math> is the direction of | ||
− | propagation of the wave. | + | propagation of the wave (with <math>\theta = 0</math> corresponding to normal incidence. |
=Transformation to an Integral Equation= | =Transformation to an Integral Equation= | ||
− | We now Floquet's theorem ( | + | We now Floquet's theorem ([[Scott 1998]]) (also called ''the assumption of periodicity'' |
− | + | in the water wave context) which states the | |
displacement from adjacent plates differ only by a phase factor. | displacement from adjacent plates differ only by a phase factor. | ||
− | If the potential under the | + | If the potential under the ''central'' plate <math>\Delta_{0}</math> is given by <math>\phi( \mathbf{x}_{0},0)</math>, |
<math>\mathbf{x}_{0}\in\Delta_{0}</math>, then by Floquet's theorem the potential | <math>\mathbf{x}_{0}\in\Delta_{0}</math>, then by Floquet's theorem the potential | ||
satisfies | satisfies | ||
<center><math> | <center><math> | ||
− | \phi(\mathbf{x}_{m},0) = \phi(\mathbf{x}_{0},0) | + | \phi(\mathbf{x}_{m},0) = \phi(\mathbf{x}_{0},0) e^{im\sigma l}, |
− | |||
</math></center> | </math></center> | ||
and the displacement of the plate <math>\Delta_{m}</math> satisfies | and the displacement of the plate <math>\Delta_{m}</math> satisfies | ||
<center><math> | <center><math> | ||
− | w(\mathbf{x}_{m}) = w(\mathbf{x}_{0}) | + | w(\mathbf{x}_{m}) = w(\mathbf{x}_{0}) e^{im\sigma l}, |
− | |||
</math></center> | </math></center> | ||
where <math>\mathbf{x}_{m} \in \Delta_{m}</math>, <math>-\infty < m < \infty</math> and | where <math>\mathbf{x}_{m} \in \Delta_{m}</math>, <math>-\infty < m < \infty</math> and | ||
− | the phase difference is <math>\sigma = k\sin\theta</math> (see, for example, | + | the phase difference is <math>\sigma = k\sin\theta</math> (see, for example, [[Linton 1998]]). |
− | |||
A standard approach to the solution of the equations of motion for | A standard approach to the solution of the equations of motion for | ||
− | the water | + | the water is the [[Green Function Solution Method]] in which |
− | + | we transform the equations into a boundary integral | |
− | equation using the | + | equation using the [[Free-Surface Green Function]]. In doing so we obtain |
− | |||
<center><math> | <center><math> | ||
− | \phi(\mathbf{x} | + | \phi(\mathbf{x}) = \phi^{\rm in} (\mathbf{x},0) |
− | +\sum_{m=-\infty}^{\infty} \int_{\Delta_{m}} | + | +\sum_{m=-\infty}^{\infty} \int_{\Delta_{m}} |
− | + | \left(G_{n_\xi}(\mathbf{x},\xi) \phi(\xi) - G(\mathbf{x},\xi) \phi_{n_\xi}(\xi) \right) d\xi | |
− | |||
− | |||
</math></center> | </math></center> | ||
− | + | <math>G(\mathbf{x},\xi)</math> is | |
− | <math>G(\mathbf{x}, | + | the [[Free-Surface Green Function]] This |
− | the | + | can be written alternatively as |
− | + | <center><math> | |
− | + | \phi(\mathbf{x}) = \phi^{\rm in}(\mathbf{x}) | |
− | + | +\int_{\Delta_{0}} | |
− | + | \sum_{m=-\infty}^{\infty} \left(G^{\mathbf{P}}_{n_\xi}(\mathbf{x},\xi+(0,ml,0))e^{im\sigma l} \phi(\xi) | |
− | + | - G^{\mathbf{P}} (\mathbf{x},\xi)e^{im\sigma l} \phi_{n_\xi}(\xi) \right) d\xi | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | <center><math> | ||
− | |||
− | \phi (\mathbf{x} | ||
− | \\ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
</math></center> | </math></center> | ||
where the kernel <math>G_{\mathbf{P}}</math> (referred to as the | where the kernel <math>G_{\mathbf{P}}</math> (referred to as the | ||
− | + | ''periodic Green function'') is given by | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<center><math> | <center><math> | ||
− | + | G^{\mathbf{P}} (\mathbf{x};\xi) | |
− | + | = \sum_{m=-\infty}^{\infty} G(\mathbf{x},\xi+(0,ml,0))e^{im\sigma l}. | |
− | |||
− | \ | ||
</math></center> | </math></center> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
=Accelerating the Convergence of the Periodic Green Function= | =Accelerating the Convergence of the Periodic Green Function= | ||
The spatial representation of the periodic Green function given by | The spatial representation of the periodic Green function given by | ||
− | equation | + | equation is slowly convergent |
and in the far field the terms decay in | and in the far field the terms decay in | ||
magnitude like <math>O(n^{-1/2})</math>. In this section we | magnitude like <math>O(n^{-1/2})</math>. In this section we | ||
show how to accelerate the convergence. We begin with the asymptotic | show how to accelerate the convergence. We begin with the asymptotic | ||
− | approximation of the | + | approximation of the Three-dimensional [[Free-Surface Green Function]] |
far from the source point, | far from the source point, | ||
<center><math> | <center><math> | ||
− | G(\mathbf{x}, | + | G(\mathbf{x},\xi) \sim -\frac{ik}{2} |
− | \,H_{0}( k |\mathbf{x}- | + | \,H_{0}( k |\mathbf{x}-\xi|), |
− | + | |\mathbf{x}-\xi| \to \infty | |
− | |||
</math></center> | </math></center> | ||
− | [[ | + | [[Wehausen and Laitone 1960]] where <math>H_0 \equiv H_{0}^{(1)}</math> is the Hankel function |
− | of the first kind of order zero [[ | + | of the first kind of order zero [[Abramowitz and Stegun 1964]]. In Linton [[Linton 1998]] |
various methods were described in which the convergence of the periodic | various methods were described in which the convergence of the periodic | ||
Green functions was improved. One such method, which suits the particular | Green functions was improved. One such method, which suits the particular | ||
problem being considered here, involves writing the periodic | problem being considered here, involves writing the periodic | ||
Green function as | Green function as | ||
− | <center><math> | + | <center><math> |
− | G_{\mathbf{P}} (\mathbf{x}; | + | G_{\mathbf{P}} (\mathbf{x};\xi) |
− | + | = \sum_{m=-\infty}^{\infty} | |
− | + | \left[ | |
− | + | G\left(\mathbf{x};\xi)+(0,ml)\right) | |
− | + | + \frac{ik}{2} H_{0} | |
− | + | \Big(k\sqrt{\left( X+cl\right)^2 + Y_{m}^2}\Big) e^{im\sigma l} | |
− | + | \right] | |
+ | -\sum_{m=-\infty}^{\infty} | ||
\frac{ik}{2}H_{0} \Big(k\sqrt{ (X+cl)^2 + Y_{m}^2 }\Big) | \frac{ik}{2}H_{0} \Big(k\sqrt{ (X+cl)^2 + Y_{m}^2 }\Big) | ||
− | + | e^{im\sigma l} | |
− | + | </math></center> | |
− | |||
where <math>c</math> is a numerical smoothing parameter, introduced to avoid the | where <math>c</math> is a numerical smoothing parameter, introduced to avoid the | ||
− | singularity at <math>\mathbf{x} = | + | singularity at <math>\mathbf{x} = \xi</math> in the Hankel |
function and | function and | ||
<center><math> | <center><math> | ||
− | X = x-\xi,\quad \ | + | X = x-\xi,\quad \mathrm{and} \quad |
Y_{m} = (y-\eta)-ml. | Y_{m} = (y-\eta)-ml. | ||
</math></center> | </math></center> | ||
− | Furthermore we use the fact that second slowly convergent sum | + | Furthermore we use the fact that second slowly convergent sum can be transformed to |
− | <center><math> ( | + | <center><math> |
− | -\frac{i}{l} \sum_{m=-\infty}^{\infty} | + | -\sum_{m=-\infty}^{\infty} |
− | \frac{ | + | \frac{ik}{2}H_{0} \Big(k\sqrt{ (X+cl)^2 + Y_{m}^2 }\Big) |
+ | e^{im\sigma l} | ||
+ | -\frac{i}{l} \sum_{m=-\infty}^{\infty} | ||
+ | \frac{e^{ik \mu_{m} |X+c| }\,e^{i \sigma_{m} Y_0}}{\mu_{m}} | ||
</math></center> | </math></center> | ||
− | [[ | + | [[Linton 1998]] where |
<math>\sigma_{m} = \sigma + 2 m \pi/l</math> and | <math>\sigma_{m} = \sigma + 2 m \pi/l</math> and | ||
<center><math> | <center><math> | ||
Line 407: | Line 127: | ||
where the positive real or positive imaginary part of | where the positive real or positive imaginary part of | ||
the square root is taken. | the square root is taken. | ||
− | Combining equations | + | Combining these equations |
we obtain the accelerated version of the periodic Green function | we obtain the accelerated version of the periodic Green function | ||
− | <center><math> | + | <center><math> |
− | G_{\mathbf{P}} (\mathbf{x}; | + | G_{\mathbf{P}} (\mathbf{x};\xi) |
− | + | = \sum_{m=-\infty}^{\infty} | |
− | \left[ G\left(\mathbf{x}; | + | \left[ G\left(\mathbf{x};\xi+(0,ml)\right) |
+ \frac{ik}{2} H_{0} \Big(k \sqrt{\left( X+cl\right)^2 + Y_{m}^2}\Big) | + \frac{ik}{2} H_{0} \Big(k \sqrt{\left( X+cl\right)^2 + Y_{m}^2}\Big) | ||
− | \right] | + | \right] e^{im\sigma l} |
− | + | -\frac{i}{l}\sum_{m=-\infty}^{\infty} | |
− | + | \frac{e^{ik \mu_{m}|X+cl| }e^{i\sigma_{m}Y_0}}{\mu_{m}}. | |
− | \frac{ | + | </math></center> |
− | + | The convergence of the two sums depends on the value | |
− | |||
− | The convergence of the two sums | ||
of <math>c</math>. For small <math>c</math> the first sum converges rapidly while the second converges | of <math>c</math>. For small <math>c</math> the first sum converges rapidly while the second converges | ||
slowly. For large <math>c</math> the second sum converges rapidly while the first converges | slowly. For large <math>c</math> the second sum converges rapidly while the first converges | ||
Line 426: | Line 144: | ||
The smoothing parameter <math>c</math> must be carefully chosen to balance these two | The smoothing parameter <math>c</math> must be carefully chosen to balance these two | ||
effects. Of course, the convergence also depends strongly on how close together the | effects. Of course, the convergence also depends strongly on how close together the | ||
− | points <math>\mathbf{x}</math> and < | + | points <math>\mathbf{x}</math> and <math>\xi</math> are. |
Note that some special combinations of wavelength <math>\lambda</math> and angle | Note that some special combinations of wavelength <math>\lambda</math> and angle | ||
of incidence <math>\theta</math> cause the periodic Green function to diverge | of incidence <math>\theta</math> cause the periodic Green function to diverge | ||
− | ( [[ | + | ( [[Scott 1998]]). This singularity is closely |
related to the diffracted waves and will be explained shortly. | related to the diffracted waves and will be explained shortly. | ||
Line 436: | Line 154: | ||
We begin with the accelerated periodic Green function, equation | We begin with the accelerated periodic Green function, equation | ||
− | + | setting <math>c=0</math> and considering the case when <math>X</math> is large | |
(positive or negative). We also note that for <math>m</math> sufficiently small | (positive or negative). We also note that for <math>m</math> sufficiently small | ||
or large <math>i\mu_m</math> will be negative and the corresponding terms will | or large <math>i\mu_m</math> will be negative and the corresponding terms will | ||
decay. Therefore | decay. Therefore | ||
− | <center><math> | + | <center><math> |
− | G_{\mathbf{P}} (\mathbf{x}; | + | G_{\mathbf{P}} (\mathbf{x};\xi) |
− | \sim - \frac{i}{l} \sum_{m=-M}^{N} \frac{ | + | \sim - \frac{i}{l} \sum_{m=-M}^{N} \frac{e^{ik\mu_{m}|X|}\, e^{i\sigma_{m}Y_0}} |
− | {\mu_{m}}, | + | {\mu_{m}}, X \to \pm \infty |
− | |||
</math></center> | </math></center> | ||
where the integers <math>M</math> and <math>N</math> satisfy the following | where the integers <math>M</math> and <math>N</math> satisfy the following | ||
Line 451: | Line 168: | ||
\left. | \left. | ||
\begin{matrix} | \begin{matrix} | ||
− | |||
\sigma_{-M-1}<-k<\sigma_{-M},\\ | \sigma_{-M-1}<-k<\sigma_{-M},\\ | ||
\sigma_{N}<k<\sigma_{N+1}. | \sigma_{N}<k<\sigma_{N+1}. | ||
\end{matrix} | \end{matrix} | ||
− | \right\} | + | \right\} |
</math></center> | </math></center> | ||
− | + | These equations can be written as | |
<center><math> | <center><math> | ||
\frac{l}{2\pi}\left(\sigma+k-2\pi \right) < M < \frac{l}{2\pi}\left( | \frac{l}{2\pi}\left(\sigma+k-2\pi \right) < M < \frac{l}{2\pi}\left( | ||
\sigma+k \right), | \sigma+k \right), | ||
− | |||
</math></center> | </math></center> | ||
and | and | ||
Line 467: | Line 182: | ||
\frac{l}{2\pi}\left( k - \sigma \right) > N > \frac{l}{2\pi} | \frac{l}{2\pi}\left( k - \sigma \right) > N > \frac{l}{2\pi} | ||
\left( k-\sigma - 2\pi \right) | \left( k-\sigma - 2\pi \right) | ||
− | |||
</math></center> | </math></center> | ||
− | [[ | + | [[Linton 1998]]. |
It is obvious that <math>G_{\mathbf{P}}</math> will diverge if <math>\sigma_m = \pm k</math>; | It is obvious that <math>G_{\mathbf{P}}</math> will diverge if <math>\sigma_m = \pm k</math>; | ||
these values correspond to cut-off frequencies which are an expected | these values correspond to cut-off frequencies which are an expected | ||
Line 478: | Line 192: | ||
The diffracted waves are the plane waves which are observed as <math>x \to \pm | The diffracted waves are the plane waves which are observed as <math>x \to \pm | ||
\infty</math>. Their amplitude and form are obtained by substituting the limit | \infty</math>. Their amplitude and form are obtained by substituting the limit | ||
− | of the periodic Green function | + | of the periodic Green function as <math>x\to\pm\infty</math> |
− | into the boundary integral equation for the potential | + | into the boundary integral equation for the potential. |
This gives us | This gives us | ||
<center><math> | <center><math> | ||
\lim_{x\to\pm\infty} | \lim_{x\to\pm\infty} | ||
\phi^{s} ( \mathbf{x},0 ) = - \frac{i}{l} \sum_{m=-M}^{N} \int_{\Delta_0} | \phi^{s} ( \mathbf{x},0 ) = - \frac{i}{l} \sum_{m=-M}^{N} \int_{\Delta_0} | ||
− | \frac{ | + | \frac{e^{ik\mu_{m} |X| } e^{i\sigma_{m}Y_0}}{\mu_{m}} |
− | \left[ k\phi( | + | \left[ k\phi(\xi,0) |
− | - w( | + | - w(\xi) \right] |
− | d | + | d\xi, |
− | |||
</math></center> | </math></center> | ||
where <math>\phi^{s} = \phi-\phi^{\rm in}</math> is the scattered wave which | where <math>\phi^{s} = \phi-\phi^{\rm in}</math> is the scattered wave which | ||
Line 494: | Line 207: | ||
<center><math> | <center><math> | ||
\lim_{x\to-\infty}\phi^{s} | \lim_{x\to-\infty}\phi^{s} | ||
− | (\mathbf{x},0) = A_{m}^{-}\, | + | (\mathbf{x},0) = A_{m}^{-}\,e^{ik\mu_{m}x}e^{i\sigma_{m}y}, |
− | |||
</math></center> | </math></center> | ||
− | where the amplitudes <math>A_{m}^{-}</math> are | + | where the amplitudes <math>A_{m}^{-}</math> are |
− | |||
<center><math> | <center><math> | ||
A_{m}^{-} = -\frac{i}{\mu_{m}l} \int_{\Delta_0} | A_{m}^{-} = -\frac{i}{\mu_{m}l} \int_{\Delta_0} | ||
− | + | e^{ik\mu_{m}\xi } e^{-i\sigma_{m}\eta} | |
− | \left[ k\phi\left( | + | \left[ k\phi\left( \xi\right) |
− | - w ( | + | - w (\xi) \right] |
− | d | + | d\xi. |
− | |||
</math></center> | </math></center> | ||
Likewise as <math>x \to \infty</math> the scattered wave is given by | Likewise as <math>x \to \infty</math> the scattered wave is given by | ||
<center><math> | <center><math> | ||
\lim_{x\to\infty}\phi^{s} (\mathbf{x},0) = | \lim_{x\to\infty}\phi^{s} (\mathbf{x},0) = | ||
− | A_{m}^{+} | + | A_{m}^{+} e^{-ik\mu_{m}x} e^{i\sigma_{m}y}, |
− | |||
</math></center> | </math></center> | ||
where <math>A_{m}^{+}</math> are | where <math>A_{m}^{+}</math> are | ||
<center><math> | <center><math> | ||
A_{m}^{+} = -\frac{i}{\mu_{m}l}\int_{\Delta_0} | A_{m}^{+} = -\frac{i}{\mu_{m}l}\int_{\Delta_0} | ||
− | + | e^{-ik\mu_{m}\xi }e^{-i\sigma_{m}\eta} | |
− | \left[ k\phi ( | + | \left[ k\phi (\xi,0) |
− | - w( | + | - w(\xi) \right] |
− | d | + | d\xi. |
− | |||
</math></center> | </math></center> | ||
The diffracted waves propagate at various angles with respect to the | The diffracted waves propagate at various angles with respect to the | ||
Line 550: | Line 258: | ||
<center><math> | <center><math> | ||
R = A_{0}^{-} | R = A_{0}^{-} | ||
− | = -\frac{i}{\mu_{0}l}\int_{\Delta_0} | + | = -\frac{i}{\mu_{0}l}\int_{\Delta_0}e^{ik (\xi\cos\theta |
− | -\eta\sin\theta)}\left[ k\phi( | + | -\eta\sin\theta)}\left[ k\phi(\xi,0) |
− | - w( | + | - w(\xi)\right] |
− | d | + | d\xi. |
− | |||
</math></center> | </math></center> | ||
The coefficient, <math>T</math>, for the fundamental transmitted wave for | The coefficient, <math>T</math>, for the fundamental transmitted wave for | ||
Line 560: | Line 267: | ||
<center><math> | <center><math> | ||
T = 1 + A_{0}^{+} | T = 1 + A_{0}^{+} | ||
− | = 1 - \frac{i}{\mu_{0}l} \int_{\Delta_0} | + | = 1 - \frac{i}{\mu_{0}l} \int_{\Delta_0} e^{-ik(\xi\cos\theta |
− | +\eta\sin\theta)}\left[ k\phi( | + | +\eta\sin\theta)}\left[ k\phi(\xi,0) |
− | - w( | + | - w(\xi) \right] |
− | d | + | d\xi. |
− | |||
</math></center> | </math></center> | ||
Line 575: | Line 281: | ||
<center><math> | <center><math> | ||
\cos\theta = \left( |R|^2+|T|^2 \right) \cos\theta | \cos\theta = \left( |R|^2+|T|^2 \right) \cos\theta | ||
− | + \sum_ | + | + \sum_{m=-M,\,m \neq 0}^{N} |
\left( |A_{m}^{-}|^2 \cos\psi_{m}^{-} +|A_{m}^{+}|^2 | \left( |A_{m}^{-}|^2 \cos\psi_{m}^{-} +|A_{m}^{+}|^2 | ||
\cos\psi_{m}^{+} \right). | \cos\psi_{m}^{+} \right). | ||
− | |||
</math></center> | </math></center> | ||
− | The energy balance equation | + | The energy balance equation can be used as an accuracy |
check on the numerical results. | check on the numerical results. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[Category:Infinite Array]] | [[Category:Infinite Array]] |
Latest revision as of 09:11, 9 January 2009
Introduction
We present here the solution to the Infinite Array based on an infinite image system of Free-Surface Green Functions
Problem Formulation
We begin by formulating the problem. Cartesian coordinates [math]\displaystyle{ (x,y,z) }[/math] are chosen with [math]\displaystyle{ z }[/math] vertically upwards such that [math]\displaystyle{ z=0 }[/math] coincides with the mean free surface of the water. An infinite array of identical bodies are periodically spaced along the [math]\displaystyle{ y }[/math]-axis with uniform separation [math]\displaystyle{ l }[/math]. The problem is to determine the motion of the water and the bodies when plane waves are obliquely-incident from [math]\displaystyle{ x=-\infty }[/math] upon the periodic array of bodies.
The bodies occupy [math]\displaystyle{ \Delta_m }[/math], [math]\displaystyle{ -\infty \lt m \lt \infty }[/math]. Periodicity implies that if [math]\displaystyle{ (x,y) \in \Delta_0 }[/math], then [math]\displaystyle{ (x,y+ml) \in \Delta_m }[/math], [math]\displaystyle{ -\infty \lt m \lt \infty }[/math].
We assume that we have the Standard Linear Wave Scattering Problem. The incident wave potential given by
where [math]\displaystyle{ A }[/math] is the dimensionless amplitude and [math]\displaystyle{ \theta }[/math] is the direction of propagation of the wave (with [math]\displaystyle{ \theta = 0 }[/math] corresponding to normal incidence.
Transformation to an Integral Equation
We now Floquet's theorem (Scott 1998) (also called the assumption of periodicity in the water wave context) which states the displacement from adjacent plates differ only by a phase factor. If the potential under the central plate [math]\displaystyle{ \Delta_{0} }[/math] is given by [math]\displaystyle{ \phi( \mathbf{x}_{0},0) }[/math], [math]\displaystyle{ \mathbf{x}_{0}\in\Delta_{0} }[/math], then by Floquet's theorem the potential satisfies
and the displacement of the plate [math]\displaystyle{ \Delta_{m} }[/math] satisfies
where [math]\displaystyle{ \mathbf{x}_{m} \in \Delta_{m} }[/math], [math]\displaystyle{ -\infty \lt m \lt \infty }[/math] and the phase difference is [math]\displaystyle{ \sigma = k\sin\theta }[/math] (see, for example, Linton 1998).
A standard approach to the solution of the equations of motion for the water is the Green Function Solution Method in which we transform the equations into a boundary integral equation using the Free-Surface Green Function. In doing so we obtain
[math]\displaystyle{ G(\mathbf{x},\xi) }[/math] is the Free-Surface Green Function This can be written alternatively as
where the kernel [math]\displaystyle{ G_{\mathbf{P}} }[/math] (referred to as the periodic Green function) is given by
Accelerating the Convergence of the Periodic Green Function
The spatial representation of the periodic Green function given by equation is slowly convergent and in the far field the terms decay in magnitude like [math]\displaystyle{ O(n^{-1/2}) }[/math]. In this section we show how to accelerate the convergence. We begin with the asymptotic approximation of the Three-dimensional Free-Surface Green Function far from the source point,
Wehausen and Laitone 1960 where [math]\displaystyle{ H_0 \equiv H_{0}^{(1)} }[/math] is the Hankel function of the first kind of order zero Abramowitz and Stegun 1964. In Linton Linton 1998 various methods were described in which the convergence of the periodic Green functions was improved. One such method, which suits the particular problem being considered here, involves writing the periodic Green function as
where [math]\displaystyle{ c }[/math] is a numerical smoothing parameter, introduced to avoid the singularity at [math]\displaystyle{ \mathbf{x} = \xi }[/math] in the Hankel function and
Furthermore we use the fact that second slowly convergent sum can be transformed to
Linton 1998 where [math]\displaystyle{ \sigma_{m} = \sigma + 2 m \pi/l }[/math] and
where the positive real or positive imaginary part of the square root is taken. Combining these equations we obtain the accelerated version of the periodic Green function
The convergence of the two sums depends on the value of [math]\displaystyle{ c }[/math]. For small [math]\displaystyle{ c }[/math] the first sum converges rapidly while the second converges slowly. For large [math]\displaystyle{ c }[/math] the second sum converges rapidly while the first converges slowly. The smoothing parameter [math]\displaystyle{ c }[/math] must be carefully chosen to balance these two effects. Of course, the convergence also depends strongly on how close together the points [math]\displaystyle{ \mathbf{x} }[/math] and [math]\displaystyle{ \xi }[/math] are.
Note that some special combinations of wavelength [math]\displaystyle{ \lambda }[/math] and angle of incidence [math]\displaystyle{ \theta }[/math] cause the periodic Green function to diverge ( Scott 1998). This singularity is closely related to the diffracted waves and will be explained shortly.
The scattered waves (modes)
We begin with the accelerated periodic Green function, equation setting [math]\displaystyle{ c=0 }[/math] and considering the case when [math]\displaystyle{ X }[/math] is large (positive or negative). We also note that for [math]\displaystyle{ m }[/math] sufficiently small or large [math]\displaystyle{ i\mu_m }[/math] will be negative and the corresponding terms will decay. Therefore
where the integers [math]\displaystyle{ M }[/math] and [math]\displaystyle{ N }[/math] satisfy the following inequalities
These equations can be written as
and
Linton 1998. It is obvious that [math]\displaystyle{ G_{\mathbf{P}} }[/math] will diverge if [math]\displaystyle{ \sigma_m = \pm k }[/math]; these values correspond to cut-off frequencies which are an expected feature of periodic structures.
The diffracted waves
The diffracted waves are the plane waves which are observed as [math]\displaystyle{ x \to \pm \infty }[/math]. Their amplitude and form are obtained by substituting the limit of the periodic Green function as [math]\displaystyle{ x\to\pm\infty }[/math] into the boundary integral equation for the potential. This gives us
where [math]\displaystyle{ \phi^{s} = \phi-\phi^{\rm in} }[/math] is the scattered wave which is composed of a finite number of plane waves. For [math]\displaystyle{ x \to -\infty }[/math] the scattered wave is given by
where the amplitudes [math]\displaystyle{ A_{m}^{-} }[/math] are
Likewise as [math]\displaystyle{ x \to \infty }[/math] the scattered wave is given by
where [math]\displaystyle{ A_{m}^{+} }[/math] are
The diffracted waves propagate at various angles with respect to the normal direction of the array. The angles of diffraction, [math]\displaystyle{ \psi_{m}^{\pm} }[/math], are given by
Notice that for [math]\displaystyle{ m=0 }[/math] we have
where [math]\displaystyle{ \theta }[/math] is the incident angle. This is exactly as expected since we should always have a transmitted wave which travels in the same direction as the incident wave and a reflected wave which travels in the negative incident angle direction.
The fundamental reflected and transmitted waves
We need to be precise when we determine the wave of order zero at [math]\displaystyle{ x\to\infty }[/math] because we have to include the incident wave. There is always at least one set of propagating waves corresponding to [math]\displaystyle{ m=0 }[/math] which correspond to simple reflection and transmission. The coefficient, [math]\displaystyle{ R }[/math], for the fundamental reflected wave for the [math]\displaystyle{ m=0 }[/math] mode is given by
The coefficient, [math]\displaystyle{ T }[/math], for the fundamental transmitted wave for the [math]\displaystyle{ m=0 }[/math] mode is given by
Conservation of energy
The diffracted wave, taking into account the correction for [math]\displaystyle{ T }[/math], must satisfy the energy flux equation. This simply says that the energy of the incoming wave must be equal to the energy of the outgoing waves. This gives us
The energy balance equation can be used as an accuracy check on the numerical results.