|
|
(25 intermediate revisions by 4 users not shown) |
Line 75: |
Line 75: |
| | | |
| The spatial representation of the periodic Green function given by | | The spatial representation of the periodic Green function given by |
− | equation ((G_periodic)) is slowly convergent | + | equation is slowly convergent |
| and in the far field the terms decay in | | and in the far field the terms decay in |
| magnitude like <math>O(n^{-1/2})</math>. In this section we | | magnitude like <math>O(n^{-1/2})</math>. In this section we |
Line 111: |
Line 111: |
| Y_{m} = (y-\eta)-ml. | | Y_{m} = (y-\eta)-ml. |
| </math></center> | | </math></center> |
− | Furthermore we use the fact that second slowly convergent sum in ((near_accelerated)) can be transformed to | + | Furthermore we use the fact that second slowly convergent sum can be transformed to |
− | <center><math> (help_accelerated) | + | <center><math> |
− | -\frac{i}{l} \sum_{m=-\infty}^{\infty} | + | -\sum_{m=-\infty}^{\infty} |
− | \frac{\exp^{ik \mu_{m} |X+c| }\,\exp^{i \sigma_{m} Y_0}}{\mu_{m}} | + | \frac{ik}{2}H_{0} \Big(k\sqrt{ (X+cl)^2 + Y_{m}^2 }\Big) |
| + | e^{im\sigma l} |
| + | -\frac{i}{l} \sum_{m=-\infty}^{\infty} |
| + | \frac{e^{ik \mu_{m} |X+c| }\,e^{i \sigma_{m} Y_0}}{\mu_{m}} |
| </math></center> | | </math></center> |
− | [[Linton 1998]],[[Jorgenson 1990]],[[Singh90]] where | + | [[Linton 1998]] where |
| <math>\sigma_{m} = \sigma + 2 m \pi/l</math> and | | <math>\sigma_{m} = \sigma + 2 m \pi/l</math> and |
| <center><math> | | <center><math> |
Line 124: |
Line 127: |
| where the positive real or positive imaginary part of | | where the positive real or positive imaginary part of |
| the square root is taken. | | the square root is taken. |
− | Combining equations ((near_accelerated)) and ((help_accelerated)) | + | Combining these equations |
| we obtain the accelerated version of the periodic Green function | | we obtain the accelerated version of the periodic Green function |
− | <center><math>\begin{matrix} | + | <center><math> |
− | G_{\mathbf{P}} (\mathbf{x};\mbox{\boldmath<math>\xi</math>}) | + | G_{\mathbf{P}} (\mathbf{x};\xi) |
− | &\! = &\!\!\!\! \displaystyle{\sum_{m=-\infty}^{\infty}} \! | + | = \sum_{m=-\infty}^{\infty} |
− | \left[ G\left(\mathbf{x};\mbox{\boldmath<math>\xi</math>}+(0,ml)\right) | + | \left[ G\left(\mathbf{x};\xi+(0,ml)\right) |
| + \frac{ik}{2} H_{0} \Big(k \sqrt{\left( X+cl\right)^2 + Y_{m}^2}\Big) | | + \frac{ik}{2} H_{0} \Big(k \sqrt{\left( X+cl\right)^2 + Y_{m}^2}\Big) |
− | \right] \exp^{im\sigma l} | + | \right] e^{im\sigma l} |
− | \\
| + | -\frac{i}{l}\sum_{m=-\infty}^{\infty} |
− | &\! &\! -\frac{i}{l}\displaystyle{\sum_{m=-\infty}^{\infty}
| + | \frac{e^{ik \mu_{m}|X+cl| }e^{i\sigma_{m}Y_0}}{\mu_{m}}. |
− | \frac{\exp^{ik \mu_{m}|X+cl| }\exp^{i\sigma_{m}Y_0}}{\mu_{m}}}. | + | </math></center> |
− | (Gp_fast)
| + | The convergence of the two sums depends on the value |
− | \end{matrix}</math></center>
| |
− | The convergence of the two sums in ((Gp_fast)) depends on the value | |
| of <math>c</math>. For small <math>c</math> the first sum converges rapidly while the second converges | | of <math>c</math>. For small <math>c</math> the first sum converges rapidly while the second converges |
| slowly. For large <math>c</math> the second sum converges rapidly while the first converges | | slowly. For large <math>c</math> the second sum converges rapidly while the first converges |
Line 143: |
Line 144: |
| The smoothing parameter <math>c</math> must be carefully chosen to balance these two | | The smoothing parameter <math>c</math> must be carefully chosen to balance these two |
| effects. Of course, the convergence also depends strongly on how close together the | | effects. Of course, the convergence also depends strongly on how close together the |
− | points <math>\mathbf{x}</math> and <math>\mbox{\boldmath</math>\xi<math>}</math> are. | + | points <math>\mathbf{x}</math> and <math>\xi</math> are. |
| | | |
| Note that some special combinations of wavelength <math>\lambda</math> and angle | | Note that some special combinations of wavelength <math>\lambda</math> and angle |
Line 153: |
Line 154: |
| | | |
| We begin with the accelerated periodic Green function, equation | | We begin with the accelerated periodic Green function, equation |
− | ((Gp_fast)) setting <math>c=0</math> and considering the case when <math>X</math> is large
| + | setting <math>c=0</math> and considering the case when <math>X</math> is large |
| (positive or negative). We also note that for <math>m</math> sufficiently small | | (positive or negative). We also note that for <math>m</math> sufficiently small |
| or large <math>i\mu_m</math> will be negative and the corresponding terms will | | or large <math>i\mu_m</math> will be negative and the corresponding terms will |
| decay. Therefore | | decay. Therefore |
− | <center><math> (G_p_accelerate) | + | <center><math> |
− | G_{\mathbf{P}} (\mathbf{x};\mbox{\boldmath<math>\xi</math>}) | + | G_{\mathbf{P}} (\mathbf{x};\xi) |
− | \sim - \frac{i}{l} \sum_{m=-M}^{N} \frac{\exp^{ik\mu_{m}|X|}\, \exp^{i\sigma_{m}Y_0}} | + | \sim - \frac{i}{l} \sum_{m=-M}^{N} \frac{e^{ik\mu_{m}|X|}\, e^{i\sigma_{m}Y_0}} |
− | {\mu_{m}}, \qquad \mbox{as <math>X \to \pm \infty</math>} | + | {\mu_{m}}, X \to \pm \infty |
− | (new_G_p_trunc)
| |
| </math></center> | | </math></center> |
| where the integers <math>M</math> and <math>N</math> satisfy the following | | where the integers <math>M</math> and <math>N</math> satisfy the following |
Line 168: |
Line 168: |
| \left. | | \left. |
| \begin{matrix} | | \begin{matrix} |
− | [c]{c}
| |
| \sigma_{-M-1}<-k<\sigma_{-M},\\ | | \sigma_{-M-1}<-k<\sigma_{-M},\\ |
| \sigma_{N}<k<\sigma_{N+1}. | | \sigma_{N}<k<\sigma_{N+1}. |
| \end{matrix} | | \end{matrix} |
− | \right\} (cut_off) | + | \right\} |
| </math></center> | | </math></center> |
− | Equations ((M_N)) can be written as
| + | These equations can be written as |
| <center><math> | | <center><math> |
| \frac{l}{2\pi}\left(\sigma+k-2\pi \right) < M < \frac{l}{2\pi}\left( | | \frac{l}{2\pi}\left(\sigma+k-2\pi \right) < M < \frac{l}{2\pi}\left( |
| \sigma+k \right), | | \sigma+k \right), |
− | (diffracted_M)
| |
| </math></center> | | </math></center> |
| and | | and |
Line 184: |
Line 182: |
| \frac{l}{2\pi}\left( k - \sigma \right) > N > \frac{l}{2\pi} | | \frac{l}{2\pi}\left( k - \sigma \right) > N > \frac{l}{2\pi} |
| \left( k-\sigma - 2\pi \right) | | \left( k-\sigma - 2\pi \right) |
− | (diffracted_N)
| |
| </math></center> | | </math></center> |
− | [[Linton98]]. | + | [[Linton 1998]]. |
| It is obvious that <math>G_{\mathbf{P}}</math> will diverge if <math>\sigma_m = \pm k</math>; | | It is obvious that <math>G_{\mathbf{P}}</math> will diverge if <math>\sigma_m = \pm k</math>; |
| these values correspond to cut-off frequencies which are an expected | | these values correspond to cut-off frequencies which are an expected |
Line 195: |
Line 192: |
| The diffracted waves are the plane waves which are observed as <math>x \to \pm | | The diffracted waves are the plane waves which are observed as <math>x \to \pm |
| \infty</math>. Their amplitude and form are obtained by substituting the limit | | \infty</math>. Their amplitude and form are obtained by substituting the limit |
− | of the periodic Green function ((new_G_p_trunc)) as <math>x\to\pm\infty</math> | + | of the periodic Green function as <math>x\to\pm\infty</math> |
− | into the boundary integral equation for the potential ((bem_eq_2)). | + | into the boundary integral equation for the potential. |
| This gives us | | This gives us |
| <center><math> | | <center><math> |
| \lim_{x\to\pm\infty} | | \lim_{x\to\pm\infty} |
| \phi^{s} ( \mathbf{x},0 ) = - \frac{i}{l} \sum_{m=-M}^{N} \int_{\Delta_0} | | \phi^{s} ( \mathbf{x},0 ) = - \frac{i}{l} \sum_{m=-M}^{N} \int_{\Delta_0} |
− | \frac{\exp^{ik\mu_{m} |X| } \exp^{i\sigma_{m}Y_0}}{\mu_{m}} | + | \frac{e^{ik\mu_{m} |X| } e^{i\sigma_{m}Y_0}}{\mu_{m}} |
− | \left[ k\phi(\mbox{\boldmath<math>\xi</math>},0) | + | \left[ k\phi(\xi,0) |
− | - w(\mbox{\boldmath<math>\xi</math>}) \right] | + | - w(\xi) \right] |
− | d\mbox{\boldmath<math>\xi</math>}, | + | d\xi, |
− | (phi_s)
| |
| </math></center> | | </math></center> |
| where <math>\phi^{s} = \phi-\phi^{\rm in}</math> is the scattered wave which | | where <math>\phi^{s} = \phi-\phi^{\rm in}</math> is the scattered wave which |
Line 211: |
Line 207: |
| <center><math> | | <center><math> |
| \lim_{x\to-\infty}\phi^{s} | | \lim_{x\to-\infty}\phi^{s} |
− | (\mathbf{x},0) = A_{m}^{-}\,\exp^{ik\mu_{m}x}\exp^{i\sigma_{m}y}, | + | (\mathbf{x},0) = A_{m}^{-}\,e^{ik\mu_{m}x}e^{i\sigma_{m}y}, |
− | (phi_m_min)
| |
| </math></center> | | </math></center> |
− | where the amplitudes <math>A_{m}^{-}</math> are identified from ((phi_s)) | + | where the amplitudes <math>A_{m}^{-}</math> are |
− | as
| |
| <center><math> | | <center><math> |
| A_{m}^{-} = -\frac{i}{\mu_{m}l} \int_{\Delta_0} | | A_{m}^{-} = -\frac{i}{\mu_{m}l} \int_{\Delta_0} |
− | \exp^{ik\mu_{m}\xi } \exp^{-i\sigma_{m}\eta} | + | e^{ik\mu_{m}\xi } e^{-i\sigma_{m}\eta} |
− | \left[ k\phi\left( \mbox{\boldmath<math>\xi</math>}\right) | + | \left[ k\phi\left( \xi\right) |
− | - w (\mbox{\boldmath<math>\xi</math>}) \right] | + | - w (\xi) \right] |
− | d\mbox{\boldmath<math>\xi</math>}. | + | d\xi. |
− | (Ad_m)
| |
| </math></center> | | </math></center> |
| Likewise as <math>x \to \infty</math> the scattered wave is given by | | Likewise as <math>x \to \infty</math> the scattered wave is given by |
| <center><math> | | <center><math> |
| \lim_{x\to\infty}\phi^{s} (\mathbf{x},0) = | | \lim_{x\to\infty}\phi^{s} (\mathbf{x},0) = |
− | A_{m}^{+} \exp^{-ik\mu_{m}x} \exp^{i\sigma_{m}y}, | + | A_{m}^{+} e^{-ik\mu_{m}x} e^{i\sigma_{m}y}, |
− | (phi_m_plus)
| |
| </math></center> | | </math></center> |
| where <math>A_{m}^{+}</math> are | | where <math>A_{m}^{+}</math> are |
| <center><math> | | <center><math> |
| A_{m}^{+} = -\frac{i}{\mu_{m}l}\int_{\Delta_0} | | A_{m}^{+} = -\frac{i}{\mu_{m}l}\int_{\Delta_0} |
− | \exp^{-ik\mu_{m}\xi }\exp^{-i\sigma_{m}\eta} | + | e^{-ik\mu_{m}\xi }e^{-i\sigma_{m}\eta} |
− | \left[ k\phi (\mbox{\boldmath<math>\xi</math>},0) | + | \left[ k\phi (\xi,0) |
− | - w(\mbox{\boldmath<math>\xi</math>}) \right] | + | - w(\xi) \right] |
− | d\mbox{\boldmath<math>\xi</math>}. | + | d\xi. |
− | (Ad_p)
| |
| </math></center> | | </math></center> |
| The diffracted waves propagate at various angles with respect to the | | The diffracted waves propagate at various angles with respect to the |
Line 267: |
Line 258: |
| <center><math> | | <center><math> |
| R = A_{0}^{-} | | R = A_{0}^{-} |
− | = -\frac{i}{\mu_{0}l}\int_{\Delta_0}\exp^{ik (\xi\cos\theta | + | = -\frac{i}{\mu_{0}l}\int_{\Delta_0}e^{ik (\xi\cos\theta |
− | -\eta\sin\theta)}\left[ k\phi(\mbox{\boldmath<math>\xi</math>},0) | + | -\eta\sin\theta)}\left[ k\phi(\xi,0) |
− | - w(\mbox{\boldmath<math>\xi</math>})\right] | + | - w(\xi)\right] |
− | d\mbox{\boldmath<math>\xi</math>}. | + | d\xi. |
− | (R)
| |
| </math></center> | | </math></center> |
| The coefficient, <math>T</math>, for the fundamental transmitted wave for | | The coefficient, <math>T</math>, for the fundamental transmitted wave for |
Line 277: |
Line 267: |
| <center><math> | | <center><math> |
| T = 1 + A_{0}^{+} | | T = 1 + A_{0}^{+} |
− | = 1 - \frac{i}{\mu_{0}l} \int_{\Delta_0} \exp^{-ik(\xi\cos\theta | + | = 1 - \frac{i}{\mu_{0}l} \int_{\Delta_0} e^{-ik(\xi\cos\theta |
− | +\eta\sin\theta)}\left[ k\phi(\mbox{\boldmath<math>\xi</math>},0) | + | +\eta\sin\theta)}\left[ k\phi(\xi,0) |
− | - w(\mbox{\boldmath<math>\xi</math>}) \right] | + | - w(\xi) \right] |
− | d\mbox{\boldmath<math>\xi</math>}. | + | d\xi. |
− | (T)
| |
| </math></center> | | </math></center> |
| | | |
Line 292: |
Line 281: |
| <center><math> | | <center><math> |
| \cos\theta = \left( |R|^2+|T|^2 \right) \cos\theta | | \cos\theta = \left( |R|^2+|T|^2 \right) \cos\theta |
− | + \sum_{\stackrel{\scriptstyle{m=-M} }{m ~ \neq 0}}^{N} | + | + \sum_{m=-M,\,m \neq 0}^{N} |
| \left( |A_{m}^{-}|^2 \cos\psi_{m}^{-} +|A_{m}^{+}|^2 | | \left( |A_{m}^{-}|^2 \cos\psi_{m}^{-} +|A_{m}^{+}|^2 |
| \cos\psi_{m}^{+} \right). | | \cos\psi_{m}^{+} \right). |
− | (NRGbal)
| |
| </math></center> | | </math></center> |
− | The energy balance equation ((NRGbal)) can be used as an accuracy | + | The energy balance equation can be used as an accuracy |
| check on the numerical results. | | check on the numerical results. |
− |
| |
− | =Results=
| |
− |
| |
− | We tested the convergence of our accelerated version of the Green function
| |
− | and we use <math>c = 0.05</math> and <math>44</math> terms in the first sum (the spatial term) and <math>46</math> terms in the second sum (the spectral term) of ((Gp_fast))).
| |
− | These values were determined by a convergence study, the details of which
| |
− | can be found in Wang [[wangphd04]].
| |
− | These values will be used in all our subsequent
| |
− | calculations. We consider four geometries for the plates which are shown
| |
− | in Figure (floes4jfs).
| |
− |
| |
− |
| |
− | ==Scattering from a Dock==
| |
− |
| |
− | Aside from the energy balance equation or wide spacing, it is difficult
| |
− | to compare our results to establish their validity. However,
| |
− | there is one case in which we can make comparisons. If we
| |
− | consider the case when we have the dock boundary condition
| |
− | under the plate (so that <math>w=0</math>) and the plates are square and joined
| |
− | then the problem reduces to a two dimensional dock problem
| |
− | which is discussed extensively in \cite[Chapter 2]{Linton_mciver01}.
| |
− | To impose the condition of
| |
− | a dock we simply solve equation ((phi_plate)) setting
| |
− | <math>\vec{w}</math> to zero (we do not require equation ((comp_eqn))),
| |
− | choosing a square plate (geometry 1) and setting the plate separation to <math>l=4</math>.
| |
− |
| |
− | Figure (fig_RnT4stiff) shows the reflection and
| |
− | transmission coefficients for a square plate (geometry 1) with
| |
− | the plate separation <math>l=4</math> and the dock boundary condition
| |
− | (crosses) and the solution to the two-dimensional dock problem using
| |
− | the method of [[Linton_mciver01]] (solid and dashed lines).
| |
− | As expected the results agree.
| |
− |
| |
− | Table (table_stiff) shows the values of the coefficient
| |
− | <math>A_{m}^{\pm}</math> for a dock of geometry 1 with <math>{\lambda=4}</math>,
| |
− | <math>{l=6}</math> and <math>{\theta=\pi/6}</math>. These results are given
| |
− | to assist in numerical comparisons.
| |
− | \begin{table}
| |
− | \begin{tabular}{ccc}
| |
− | \hline
| |
− | <math>m</math> & <math>A_{m}^{-}</math> & <math>A_{m}^{+}</math> \\ \hline
| |
− | <math>-2</math> & <math>-0.214-0.042i</math> & <math>0.232+0.023i</math> \\
| |
− | <math>-1</math> & <math>0.266-0.268i</math> & <math>-0.185+0.349i</math> \\
| |
− | <math>0</math> & <math>0.631-0.210i</math> & <math>-0.702-0.141i</math> \\
| |
− | \end{tabular}
| |
− | \caption[]{The coefficients <math>A_{m}^{\pm}</math> for the
| |
− | case of a dock of geometry 1 with <math>{\lambda=4}</math>,
| |
− | <math>{l=6}</math> and <math>{\theta=\pi/6}</math>.} (table_stiff)
| |
− | \end{table}
| |
− |
| |
− | ==Scattering from Elastic Plates==
| |
− |
| |
− | We begin with a short table of numerical results. Table (flexible_table)
| |
− | is equivalent to
| |
− | Table (table_stiff) except that the plate is now elastic
| |
− | with <math>\beta = 0.1</math> and <math>\gamma = 0</math>. As expected the reflected
| |
− | energy is less because the waves can propagate under the elastic
| |
− | plates.
| |
− | \begin{table}
| |
− | \begin{tabular}{ccc}
| |
− | \hline
| |
− | <math>m</math> & <math>A_{m}^{-}</math> & <math>A_{m}^{+} </math> \\ \hline
| |
− | <math>-2</math> & <math>0.001+0.014i</math> & <math>-0.040-0.016i</math> \\
| |
− | <math>-1</math> & <math>-0.016-0.008i</math> & <math>-0.070-0.099i</math> \\
| |
− | <math>0</math> & <math>-0.058-0.072i</math> & <math>-0.209-0.582i</math> \\
| |
− | \end{tabular}
| |
− | \caption[]{The coefficients <math>A_{m}^{\pm}</math> for the
| |
− | case of an elastic plate of geometry 1 with <math>{\beta=0.1}</math>,
| |
− | <math>{\gamma=0}</math>, <math>{\lambda=4}</math>,
| |
− | <math>{l=6}</math> and <math>{\theta=\pi/6}</math>.} (flexible_table)
| |
− | \end{table}
| |
− | Figures (fig_square_vartheta_beta0p1) and
| |
− | (fig_triangle_vartheta_beta0p1) show the amplitudes of
| |
− | the diffracted waves
| |
− | due to the array as a function of the incident angle
| |
− | for plates of geometry one and two respectively with <math>\beta=0.1</math>,
| |
− | <math>\gamma=0</math>, <math>k=\pi/2</math>, and <math>l=6</math>. There are 3 pairs of diffracted
| |
− | waves (including the reflected-transmitted pair) for any angle.
| |
− | <math>G_{\bf P}</math> diverges if <math>\sigma_n = \pm k</math> which for our values
| |
− | of <math>l</math> and <math>k</math> means that <math>\theta = \pm 0.3398</math>. As <math>\theta</math> moves
| |
− | across these points one of the diffracted waves disappears
| |
− | (at <math>\pm\pi/2</math>) and an other appears (at <math>\mp\pi/2</math>). In the plots
| |
− | we have plotted <math>A^{\pm}_{-2}</math> and <math>A^{\pm}_{1}</math> with the same
| |
− | line style and also <math>A^{\pm}_{-1}</math> and <math>A^{\pm}_{2}</math> since they represent
| |
− | diffracted waves which appear and disappear together. Interestingly
| |
− | the result of doing this is to produce smooth curves for
| |
− | <math>-\pi/2<\theta<\pi/2</math>. Figures (fig_square_vartheta_beta0p1) and
| |
− | (fig_triangle_vartheta_beta0p1) show that there is a very
| |
− | strong dependence on the amount of reflected energy as a function
| |
− | of incident angle with small angles giving the smallest reflection
| |
− | and large angles giving the greatest reflection.
| |
− |
| |
− | Figures (fig_disp_p_square) to (fig_disp_p_trapezoid)
| |
− | show the real part of the displacement for
| |
− | five plates (<math>\Delta_{j}</math>, <math>j=-2,-1,0,1,2 </math>)
| |
− | of the array for plates of geometry one to four
| |
− | respectively, with <math>\beta=0.1</math>, <math>\gamma=0</math>, and <math>l=6</math>. The angle
| |
− | of incidence is <math>\theta=\pi/6</math>.
| |
− | We consider two values of the wavenumber, <math>k=\pi/2</math> (a) and
| |
− | <math>k=\pi/4</math> (b). The complex response of the elastic plates is
| |
− | apparent in these figures as is the coupling between
| |
− | the water and the plate. It is also clear that there is a great
| |
− | deal of difference in the individual behaviour of plates of
| |
− | different geometries. This has practical implications for
| |
− | experiments which might be performed on individual ice floes.
| |
− | For example, from these figures it appears that it will be very difficult
| |
− | to make
| |
− | measurements of wave spectra using an accelerometer
| |
− | deployed on an ice floe if the floe size is comparable to the
| |
− | wavelength.
| |
− |
| |
− | In Figure (energy_vs_k) we consider the total reflected energy
| |
− | <math>E_R</math> given by
| |
− | <center><math>
| |
− | E_R = |R|^2 \cos\theta
| |
− | + \sum_{\stackrel{\scriptstyle{m=-M} }{m ~ \neq 0}}^{N}
| |
− | |A_{m}^{-}|^2 \cos\psi_{m}^{-}
| |
− | </math></center>
| |
− | as a function of <math>k</math> for <math>l= 6</math>, <math>\beta=0.1</math>, and <math>\gamma=0</math>
| |
− | for floes of geometry 1 and 2 and for angles of <math>\theta = 0</math>, <math>\pi/6</math>,
| |
− | and <math>\pi/3</math>. In Figure (energy_vs_k) we have
| |
− | divided <math>E_R</math> by <math>\cos\theta</math> to normalise the curves,
| |
− | since if all the energy is reflected
| |
− | <math>E_R/\cos\theta=1</math>.
| |
− | This figure shows the kind of important results which we
| |
− | can produce from our model even with some simple calculations.
| |
− | The results show that for <math>k<1</math> there is no scattering of energy
| |
− | at all. While it is to be expected that long wavelength waves
| |
− | will not be strongly scattered this figure gives us
| |
− | a quantitative value for the <math>k</math> below which there
| |
− | is negligible scattering. As <math>k</math> increases the reflection
| |
− | increases and this increase is much more marked for waves incident
| |
− | at a large angle. This is to be expected since waves which
| |
− | are normally incident can be expected to pass through the plates
| |
− | even for short wavelengths. However, the effect of angle appears to
| |
− | be much stronger than might be expected on a simple geometric
| |
− | argument (which is also what was found in Figures
| |
− | (fig_square_vartheta_beta0p1) and (fig_triangle_vartheta_beta0p1)).
| |
− | Interestingly, the effect of geometry is much less
| |
− | significant than either <math>\theta</math> or <math>k</math>. This
| |
− | implies that for practical purposes it
| |
− | may be sufficient to take one or two representative geometries.
| |
− | This seems surprising given the differences in the responses of
| |
− | plates of different geometries shown in Figures (fig_disp_p_square)
| |
− | to (fig_disp_p_trapezoid).
| |
− | Figure (energy_vs_k) can be regarded as a preliminary figure,
| |
− | showing the kinds of calculations which are required to develop
| |
− | a model for wave scattering in the marginal ice zone from the present
| |
− | results.
| |
− |
| |
− | =Concluding Remarks=
| |
− |
| |
− | Motivated by the problem of modelling wave propagation in the
| |
− | marginal ice zone and by the general problem of scattering by
| |
− | arrays of bodies we have presented a solution to the problem
| |
− | of wave scattering by an infinite array of floating elastic
| |
− | plates. The model is based on the linear theory and assumes that
| |
− | the floe submergence is negligible. For this reason it is applicable
| |
− | to low to moderate wave heights and to floes whose size is large compared
| |
− | to the floe thickness.
| |
− | The solution method is similar to that used to solve
| |
− | for a single plate except that the periodic Green function must
| |
− | be used. The periodic Green function is obtained by summing the free-surface
| |
− | Green function for all <math>y</math>. However the periodic Green function is slowly
| |
− | convergent and therefore a method, which is commonly used in Optics, is
| |
− | devised to accelerate the convergence. The acceleration method involves
| |
− | expressing the infinite sum of the Green function in its far-field form.
| |
− | From the far-field representation of the periodic Green Function, we
| |
− | calculate the diffracted wave
| |
− | far from the array and the cut-off frequencies. We have checked our
| |
− | numerical calculations for energy balance and against the
| |
− | limiting case when the plates are rigid and joined where the
| |
− | solution reduces to that of a rigid dock. We have also presented
| |
− | solutions for a range of elastic plate geometries.
| |
− |
| |
− | The solution method could be extended to water of finite depth using
| |
− | a similar periodic Green function, but in this case based on the free
| |
− | surface Green function for finite depth water. The same problems of slow
| |
− | convergence would arise and a similar method for convergence of the
| |
− | series would be required. We believe that a method similar to the one
| |
− | presented here could be used to accelerate the convergence of the periodic
| |
− | Green function for water of finite depth. Another extension would be to consider
| |
− | a doubly periodic lattice in which a doubly periodic Green function
| |
− | would be required. This should also be able to be computed quickly by
| |
− | methods similar to the ones presented here.
| |
− |
| |
− | The most important extension of this work concerns using it to construct
| |
− | a scattering model for the marginal ice zone. Such a model would be based
| |
− | on the solutions presented here but would be a far from trivial extension
| |
− | of it. For a model to be realistic the effects which have been induced by
| |
− | the assumption of periodicity would have to be removed. One method to do
| |
− | this would be to consider random spacings of the ice floes and to average the
| |
− | result over these. This should lead to a scattered wave field over
| |
− | all directions rather than discrete scattering angles as well as a reflected
| |
− | and transmitted wave. These solutions would then have to be combined, again with
| |
− | some kind of averaging and wide spacing approximation, to compute the
| |
− | scattering by multiple rows of ice floes.
| |
− |
| |
− |
| |
− |
| |
− | \bibliography{/home/groups/seaice/bibdata/mike,/home/groups/seaice/bibdata/others,/home/meylan/Papers/Periodic_Cynthia/ALMOSTALL,/home/meylan/Papers/Periodic_Cynthia/Cynthia}
| |
− |
| |
− |
| |
− |
| |
− | \pagebreak
| |
− | \begin{figure}
| |
− | [p]
| |
− | \begin{center}
| |
− | \includegraphics[scale = 0.7]
| |
− | {array}
| |
− | \caption{A schematic diagram of the periodic array of floating elastic
| |
− | plates.}
| |
− | (fig_array)
| |
− | \end{center}
| |
− | \end{figure}
| |
− |
| |
− | \begin{figure}[ptb]
| |
− | \begin{center}
| |
− | \includegraphics[scale = 0.7
| |
− |
| |
− |
| |
− | ]
| |
− | {floes4jfs}
| |
− | \caption{Diagram of the four plate geometries for which we will
| |
− | calculate solutions. }
| |
− | (floes4jfs)
| |
− | \end{center}
| |
− | \end{figure}
| |
− |
| |
− | \begin{figure}
| |
− | [p]
| |
− | \begin{center}
| |
− | \includegraphics[scale = 0.7]{stiff_compare}
| |
− | \caption{The reflection coefficient <math>R</math> (solid line)
| |
− | and the transmission coefficient <math>T</math> (dashed line) as a function
| |
− | of <math>k</math> for a two-dimensional dock of length 4 for the incident
| |
− | angles shown. The crosses are the same problem solved using
| |
− | the three-dimensional array code with the dock boundary
| |
− | condition and using plates of geometry 1 with <math>l=4</math>.}
| |
− | (fig_RnT4stiff)
| |
− | \end{center}
| |
− | \end{figure}
| |
− |
| |
− | \begin{figure}
| |
− | [p]
| |
− | \begin{center}
| |
− | \includegraphics[scale = 0.7
| |
− |
| |
− |
| |
− | ]
| |
− | {diffracted_square}
| |
− | \caption{The diffracted waves <math>A_m^\pm</math> for a periodic array
| |
− | of geometry one plates with <math>k=\pi/2</math>, <math>l=6</math>, <math>\beta=0.1,</math> <math>\gamma=0</math>,
| |
− | and <math>l=6</math>. The solid line
| |
− | is <math>A_0^\pm</math>, the chained line is <math>A_{-2}^\pm</math> and <math>A_1^\pm</math> and the
| |
− | dashed line is <math>A_{-1}^\pm</math> and <math>A_2^\pm</math>.}
| |
− | (fig_square_vartheta_beta0p1)
| |
− | \end{center}
| |
− | \end{figure}
| |
− |
| |
− | \begin{figure}
| |
− | [p]
| |
− | \begin{center}
| |
− | \includegraphics[scale = 0.7
| |
− |
| |
− |
| |
− | ]
| |
− | {diffracted_triangle}
| |
− | \caption{As for figure (fig_square_vartheta_beta0p1) except that
| |
− | the pate has geometry 2. }
| |
− | (fig_triangle_vartheta_beta0p1)
| |
− | \end{center}
| |
− | \end{figure}
| |
− |
| |
− | \begin{figure}
| |
− | [p]
| |
− | \begin{center}
| |
− | \includegraphics[scale = 0.7
| |
− |
| |
− |
| |
− | ]
| |
− | {disp_P_square}
| |
− | \caption{The real part of the displacement <math>w</math> for five plates of geometry one
| |
− | which are part of a periodic
| |
− | array, <math>l= 6</math>, <math>\theta=\pi/6</math>, <math>\beta=0.1</math>, <math>\gamma=0</math> and
| |
− | (a) <math>k=\pi/2</math> and (b) <math>k=\pi/4=8</math>.}
| |
− | (fig_disp_p_square)
| |
− | \end{center}
| |
− | \end{figure}
| |
− |
| |
− | \begin{figure}
| |
− | [p]
| |
− | \begin{center}
| |
− | \includegraphics[scale = 0.7
| |
− |
| |
− |
| |
− | ]
| |
− | {disp_P_triangle}
| |
− | \caption{As for figure (fig_disp_p_square) except that the
| |
− | plate is of geometry two.}
| |
− | (fig_disp_p_triangle)
| |
− | \end{center}
| |
− | \end{figure}
| |
− |
| |
− | \begin{figure}
| |
− | [p]
| |
− | \begin{center}
| |
− | \includegraphics[scale = 0.7
| |
− |
| |
− |
| |
− | ]
| |
− | {disp_P_parallelogram}
| |
− | \caption{As for figure (fig_disp_p_square) except that the
| |
− | plate is of geometry three.}
| |
− | (fig_disp_p_parallelogram)
| |
− | \end{center}
| |
− | \end{figure}
| |
− |
| |
− | \begin{figure}
| |
− | [p]
| |
− | \begin{center}
| |
− | \includegraphics[scale = 0.7
| |
− |
| |
− |
| |
− | ]
| |
− | {disp_P_trapezoid}
| |
− | \caption{As for figure (fig_disp_p_square) except that the
| |
− | plate is of geometry four.}
| |
− | (fig_disp_p_trapezoid)
| |
− | \end{center}
| |
− | \end{figure}
| |
− |
| |
− | \begin{figure}
| |
− | [p]
| |
− | \begin{center}
| |
− | \includegraphics[scale = 0.7
| |
− |
| |
− |
| |
− | ]
| |
− | {energy_vs_k}
| |
− | \caption{The total reflected energy <math>E_R</math> divided by
| |
− | <math>\cos\theta</math> as a function of <math>k</math> for floes of geometry 1 (a)
| |
− | and 2 (b). <math>l= 6</math>, <math>\beta=0.1</math>, <math>\gamma=0</math>, and
| |
− | <math>\theta = 0</math> (solid line), <math>\pi/6</math> (dashed line), and <math>\pi/3</math>
| |
− | (chained line).}
| |
− | (energy_vs_k)
| |
− | \end{center}
| |
− | \end{figure}
| |
− |
| |
− |
| |
| | | |
| | | |
| [[Category:Infinite Array]] | | [[Category:Infinite Array]] |
Introduction
We present here the solution to the Infinite Array based
on an infinite image system of Free-Surface Green Functions
Problem Formulation
We begin by formulating the problem.
Cartesian coordinates [math]\displaystyle{ (x,y,z) }[/math] are chosen with [math]\displaystyle{ z }[/math] vertically upwards
such that [math]\displaystyle{ z=0 }[/math] coincides with the mean free surface of the water.
An infinite array of identical bodies
are periodically spaced along
the [math]\displaystyle{ y }[/math]-axis with uniform separation [math]\displaystyle{ l }[/math]. The problem is to determine
the motion of the water and the bodies when plane waves are obliquely-incident
from [math]\displaystyle{ x=-\infty }[/math] upon the periodic array of bodies.
The bodies occupy [math]\displaystyle{ \Delta_m }[/math], [math]\displaystyle{ -\infty \lt m \lt \infty }[/math]. Periodicity implies
that if [math]\displaystyle{ (x,y) \in \Delta_0 }[/math], then [math]\displaystyle{ (x,y+ml) \in \Delta_m }[/math],
[math]\displaystyle{ -\infty \lt m \lt \infty }[/math].
We assume that we have the Standard Linear Wave Scattering Problem.
The incident wave
potential given by
[math]\displaystyle{
\phi^{{\rm in}} = \frac{A}{k}
e^{ik (x\cos\theta+y\sin\theta)}\,e^{kz},
}[/math]
where [math]\displaystyle{ A }[/math] is the dimensionless amplitude and [math]\displaystyle{ \theta }[/math] is the direction of
propagation of the wave (with [math]\displaystyle{ \theta = 0 }[/math] corresponding to normal incidence.
Transformation to an Integral Equation
We now Floquet's theorem (Scott 1998) (also called the assumption of periodicity
in the water wave context) which states the
displacement from adjacent plates differ only by a phase factor.
If the potential under the central plate [math]\displaystyle{ \Delta_{0} }[/math] is given by [math]\displaystyle{ \phi( \mathbf{x}_{0},0) }[/math],
[math]\displaystyle{ \mathbf{x}_{0}\in\Delta_{0} }[/math], then by Floquet's theorem the potential
satisfies
[math]\displaystyle{
\phi(\mathbf{x}_{m},0) = \phi(\mathbf{x}_{0},0) e^{im\sigma l},
}[/math]
and the displacement of the plate [math]\displaystyle{ \Delta_{m} }[/math] satisfies
[math]\displaystyle{
w(\mathbf{x}_{m}) = w(\mathbf{x}_{0}) e^{im\sigma l},
}[/math]
where [math]\displaystyle{ \mathbf{x}_{m} \in \Delta_{m} }[/math], [math]\displaystyle{ -\infty \lt m \lt \infty }[/math] and
the phase difference is [math]\displaystyle{ \sigma = k\sin\theta }[/math] (see, for example, Linton 1998).
A standard approach to the solution of the equations of motion for
the water is the Green Function Solution Method in which
we transform the equations into a boundary integral
equation using the Free-Surface Green Function. In doing so we obtain
[math]\displaystyle{
\phi(\mathbf{x}) = \phi^{\rm in} (\mathbf{x},0)
+\sum_{m=-\infty}^{\infty} \int_{\Delta_{m}}
\left(G_{n_\xi}(\mathbf{x},\xi) \phi(\xi) - G(\mathbf{x},\xi) \phi_{n_\xi}(\xi) \right) d\xi
}[/math]
[math]\displaystyle{ G(\mathbf{x},\xi) }[/math] is
the Free-Surface Green Function This
can be written alternatively as
[math]\displaystyle{
\phi(\mathbf{x}) = \phi^{\rm in}(\mathbf{x})
+\int_{\Delta_{0}}
\sum_{m=-\infty}^{\infty} \left(G^{\mathbf{P}}_{n_\xi}(\mathbf{x},\xi+(0,ml,0))e^{im\sigma l} \phi(\xi)
- G^{\mathbf{P}} (\mathbf{x},\xi)e^{im\sigma l} \phi_{n_\xi}(\xi) \right) d\xi
}[/math]
where the kernel [math]\displaystyle{ G_{\mathbf{P}} }[/math] (referred to as the
periodic Green function) is given by
[math]\displaystyle{
G^{\mathbf{P}} (\mathbf{x};\xi)
= \sum_{m=-\infty}^{\infty} G(\mathbf{x},\xi+(0,ml,0))e^{im\sigma l}.
}[/math]
Accelerating the Convergence of the Periodic Green Function
The spatial representation of the periodic Green function given by
equation is slowly convergent
and in the far field the terms decay in
magnitude like [math]\displaystyle{ O(n^{-1/2}) }[/math]. In this section we
show how to accelerate the convergence. We begin with the asymptotic
approximation of the Three-dimensional Free-Surface Green Function
far from the source point,
[math]\displaystyle{
G(\mathbf{x},\xi) \sim -\frac{ik}{2}
\,H_{0}( k |\mathbf{x}-\xi|),
|\mathbf{x}-\xi| \to \infty
}[/math]
Wehausen and Laitone 1960 where [math]\displaystyle{ H_0 \equiv H_{0}^{(1)} }[/math] is the Hankel function
of the first kind of order zero Abramowitz and Stegun 1964. In Linton Linton 1998
various methods were described in which the convergence of the periodic
Green functions was improved. One such method, which suits the particular
problem being considered here, involves writing the periodic
Green function as
[math]\displaystyle{
G_{\mathbf{P}} (\mathbf{x};\xi)
= \sum_{m=-\infty}^{\infty}
\left[
G\left(\mathbf{x};\xi)+(0,ml)\right)
+ \frac{ik}{2} H_{0}
\Big(k\sqrt{\left( X+cl\right)^2 + Y_{m}^2}\Big) e^{im\sigma l}
\right]
-\sum_{m=-\infty}^{\infty}
\frac{ik}{2}H_{0} \Big(k\sqrt{ (X+cl)^2 + Y_{m}^2 }\Big)
e^{im\sigma l}
}[/math]
where [math]\displaystyle{ c }[/math] is a numerical smoothing parameter, introduced to avoid the
singularity at [math]\displaystyle{ \mathbf{x} = \xi }[/math] in the Hankel
function and
[math]\displaystyle{
X = x-\xi,\quad \mathrm{and} \quad
Y_{m} = (y-\eta)-ml.
}[/math]
Furthermore we use the fact that second slowly convergent sum can be transformed to
[math]\displaystyle{
-\sum_{m=-\infty}^{\infty}
\frac{ik}{2}H_{0} \Big(k\sqrt{ (X+cl)^2 + Y_{m}^2 }\Big)
e^{im\sigma l}
-\frac{i}{l} \sum_{m=-\infty}^{\infty}
\frac{e^{ik \mu_{m} |X+c| }\,e^{i \sigma_{m} Y_0}}{\mu_{m}}
}[/math]
Linton 1998 where
[math]\displaystyle{ \sigma_{m} = \sigma + 2 m \pi/l }[/math] and
[math]\displaystyle{
\mu_m = \left[ 1-\left(\frac{\sigma_{m}}{k}
\right)^{2} \right]^{\frac{1}{2}},
}[/math]
where the positive real or positive imaginary part of
the square root is taken.
Combining these equations
we obtain the accelerated version of the periodic Green function
[math]\displaystyle{
G_{\mathbf{P}} (\mathbf{x};\xi)
= \sum_{m=-\infty}^{\infty}
\left[ G\left(\mathbf{x};\xi+(0,ml)\right)
+ \frac{ik}{2} H_{0} \Big(k \sqrt{\left( X+cl\right)^2 + Y_{m}^2}\Big)
\right] e^{im\sigma l}
-\frac{i}{l}\sum_{m=-\infty}^{\infty}
\frac{e^{ik \mu_{m}|X+cl| }e^{i\sigma_{m}Y_0}}{\mu_{m}}.
}[/math]
The convergence of the two sums depends on the value
of [math]\displaystyle{ c }[/math]. For small [math]\displaystyle{ c }[/math] the first sum converges rapidly while the second converges
slowly. For large [math]\displaystyle{ c }[/math] the second sum converges rapidly while the first converges
slowly.
The smoothing parameter [math]\displaystyle{ c }[/math] must be carefully chosen to balance these two
effects. Of course, the convergence also depends strongly on how close together the
points [math]\displaystyle{ \mathbf{x} }[/math] and [math]\displaystyle{ \xi }[/math] are.
Note that some special combinations of wavelength [math]\displaystyle{ \lambda }[/math] and angle
of incidence [math]\displaystyle{ \theta }[/math] cause the periodic Green function to diverge
( Scott 1998). This singularity is closely
related to the diffracted waves and will be explained shortly.
The scattered waves (modes)
We begin with the accelerated periodic Green function, equation
setting [math]\displaystyle{ c=0 }[/math] and considering the case when [math]\displaystyle{ X }[/math] is large
(positive or negative). We also note that for [math]\displaystyle{ m }[/math] sufficiently small
or large [math]\displaystyle{ i\mu_m }[/math] will be negative and the corresponding terms will
decay. Therefore
[math]\displaystyle{
G_{\mathbf{P}} (\mathbf{x};\xi)
\sim - \frac{i}{l} \sum_{m=-M}^{N} \frac{e^{ik\mu_{m}|X|}\, e^{i\sigma_{m}Y_0}}
{\mu_{m}}, X \to \pm \infty
}[/math]
where the integers [math]\displaystyle{ M }[/math] and [math]\displaystyle{ N }[/math] satisfy the following
inequalities
[math]\displaystyle{ (M_N)
\left.
\begin{matrix}
\sigma_{-M-1}\lt -k\lt \sigma_{-M},\\
\sigma_{N}\lt k\lt \sigma_{N+1}.
\end{matrix}
\right\}
}[/math]
These equations can be written as
[math]\displaystyle{
\frac{l}{2\pi}\left(\sigma+k-2\pi \right) \lt M \lt \frac{l}{2\pi}\left(
\sigma+k \right),
}[/math]
and
[math]\displaystyle{
\frac{l}{2\pi}\left( k - \sigma \right) \gt N \gt \frac{l}{2\pi}
\left( k-\sigma - 2\pi \right)
}[/math]
Linton 1998.
It is obvious that [math]\displaystyle{ G_{\mathbf{P}} }[/math] will diverge if [math]\displaystyle{ \sigma_m = \pm k }[/math];
these values correspond to cut-off frequencies which are an expected
feature of periodic structures.
The diffracted waves
The diffracted waves are the plane waves which are observed as [math]\displaystyle{ x \to \pm
\infty }[/math]. Their amplitude and form are obtained by substituting the limit
of the periodic Green function as [math]\displaystyle{ x\to\pm\infty }[/math]
into the boundary integral equation for the potential.
This gives us
[math]\displaystyle{
\lim_{x\to\pm\infty}
\phi^{s} ( \mathbf{x},0 ) = - \frac{i}{l} \sum_{m=-M}^{N} \int_{\Delta_0}
\frac{e^{ik\mu_{m} |X| } e^{i\sigma_{m}Y_0}}{\mu_{m}}
\left[ k\phi(\xi,0)
- w(\xi) \right]
d\xi,
}[/math]
where [math]\displaystyle{ \phi^{s} = \phi-\phi^{\rm in} }[/math] is the scattered wave which
is composed of a finite number of plane waves. For [math]\displaystyle{ x \to -\infty }[/math] the scattered wave is given by
[math]\displaystyle{
\lim_{x\to-\infty}\phi^{s}
(\mathbf{x},0) = A_{m}^{-}\,e^{ik\mu_{m}x}e^{i\sigma_{m}y},
}[/math]
where the amplitudes [math]\displaystyle{ A_{m}^{-} }[/math] are
[math]\displaystyle{
A_{m}^{-} = -\frac{i}{\mu_{m}l} \int_{\Delta_0}
e^{ik\mu_{m}\xi } e^{-i\sigma_{m}\eta}
\left[ k\phi\left( \xi\right)
- w (\xi) \right]
d\xi.
}[/math]
Likewise as [math]\displaystyle{ x \to \infty }[/math] the scattered wave is given by
[math]\displaystyle{
\lim_{x\to\infty}\phi^{s} (\mathbf{x},0) =
A_{m}^{+} e^{-ik\mu_{m}x} e^{i\sigma_{m}y},
}[/math]
where [math]\displaystyle{ A_{m}^{+} }[/math] are
[math]\displaystyle{
A_{m}^{+} = -\frac{i}{\mu_{m}l}\int_{\Delta_0}
e^{-ik\mu_{m}\xi }e^{-i\sigma_{m}\eta}
\left[ k\phi (\xi,0)
- w(\xi) \right]
d\xi.
}[/math]
The diffracted waves propagate at various angles with respect to the
normal direction of the array. The angles of diffraction,
[math]\displaystyle{ \psi_{m}^{\pm} }[/math], are given by
[math]\displaystyle{
\psi_{m}^{\pm} = \tan^{-1}\left( \frac{\sigma_{m}}{\pm k\mu_{m}}\right).
(psi_m)
}[/math]
Notice that for [math]\displaystyle{ m=0 }[/math] we have
[math]\displaystyle{
\psi_{0}^{\pm}=\pm\theta,
(psi_0)
}[/math]
where [math]\displaystyle{ \theta }[/math] is the incident angle. This is exactly as expected since we
should always have a transmitted wave which travels in the same direction
as the incident wave and a reflected wave which travels in the negative
incident angle direction.
The fundamental reflected and transmitted waves
We need to be precise when we determine the wave
of order zero at [math]\displaystyle{ x\to\infty }[/math] because we have to include
the incident wave. There is always at least one set of propagating waves
corresponding to [math]\displaystyle{ m=0 }[/math] which correspond
to simple reflection and transmission.
The coefficient, [math]\displaystyle{ R }[/math], for the fundamental reflected wave for the [math]\displaystyle{ m=0 }[/math] mode
is given by
[math]\displaystyle{
R = A_{0}^{-}
= -\frac{i}{\mu_{0}l}\int_{\Delta_0}e^{ik (\xi\cos\theta
-\eta\sin\theta)}\left[ k\phi(\xi,0)
- w(\xi)\right]
d\xi.
}[/math]
The coefficient, [math]\displaystyle{ T }[/math], for the fundamental transmitted wave for
the [math]\displaystyle{ m=0 }[/math] mode is given by
[math]\displaystyle{
T = 1 + A_{0}^{+}
= 1 - \frac{i}{\mu_{0}l} \int_{\Delta_0} e^{-ik(\xi\cos\theta
+\eta\sin\theta)}\left[ k\phi(\xi,0)
- w(\xi) \right]
d\xi.
}[/math]
Conservation of energy
The diffracted wave, taking into account the correction for [math]\displaystyle{ T }[/math], must
satisfy the energy flux equation. This simply says that the energy of the
incoming wave must be equal to the energy of the outgoing waves.
This gives us
[math]\displaystyle{
\cos\theta = \left( |R|^2+|T|^2 \right) \cos\theta
+ \sum_{m=-M,\,m \neq 0}^{N}
\left( |A_{m}^{-}|^2 \cos\psi_{m}^{-} +|A_{m}^{+}|^2
\cos\psi_{m}^{+} \right).
}[/math]
The energy balance equation can be used as an accuracy
check on the numerical results.