Difference between revisions of "Graf's Addition Theorem"
m |
|||
(16 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | Graf's addition theorem for Bessel functions | + | Graf's addition theorem for Bessel functions is given in |
− | [[Abramowitz and Stegun 1964]], is | + | [[Abramowitz and Stegun 1964]]. It is a special case of a general addition theorem called Neumann's addition theorem. Details |
+ | can be found in [http://www.math.sfu.ca/~cbm/aands/page_363.htm Abramowitz and Stegun 1964 online]. We express the theorem | ||
+ | in the following form | ||
+ | <center><math> | ||
+ | C_\nu(\eta r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} = | ||
+ | \sum_{\mu = - \infty}^{\infty} C_{\nu + \mu} (\eta R_{jl}) \, | ||
+ | J_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu (\pi - \theta_l + \vartheta_{jl})}, | ||
+ | \quad j \neq l, | ||
+ | </math></center> | ||
+ | where <math>C_\nu</math> can represent any of the [http://en.wikipedia.org/wiki/Bessel_function Bessel functions] | ||
+ | <math>\,\!J_\nu</math>, <math>\,\!I_\nu</math>, <math>\,\!Y_\nu</math>, <math>\,\!K_\nu</math>, <math>H_\nu^{(1)}</math>, and <math>H_\nu^{(2)}</math>, | ||
+ | <math>(r_j,\theta_j)\,\!</math> and <math>(r_l,\theta_l)\,\!</math> are polar coordinates centred at two different positions | ||
+ | with global coordinates <math>\boldsymbol{O}_j </math>, <math> \boldsymbol{O}_l </math>, and | ||
+ | <math>(R_{jl},\vartheta_{jl})</math> are the polar coordinates of <math> \boldsymbol{O}_l </math> with respect to <math> \boldsymbol{O}_j </math>. | ||
+ | This expression is valid only provided that <math>\,\!r_l < R_{jl}</math> ( | ||
+ | although this restriction is unnecessary if <math>\,\!C=J</math> and <math>\,\!\nu</math> is an integer). | ||
+ | |||
+ | Explicit versions of the theorem are given below, | ||
<center><math> | <center><math> | ||
H_\nu^{(1)}(\eta r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} = | H_\nu^{(1)}(\eta r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} = | ||
Line 12: | Line 29: | ||
(\pi - \theta_l + \vartheta_{jl})}, \quad j \neq l, | (\pi - \theta_l + \vartheta_{jl})}, \quad j \neq l, | ||
</math></center> | </math></center> | ||
− | + | This theorem form the basis for [[Kagemoto and Yue Interaction Theory]]. | |
[[Category:Numerical Methods]] | [[Category:Numerical Methods]] | ||
− | [[Category: | + | [[Category:Interaction Theory]] |
Latest revision as of 05:42, 28 April 2009
Graf's addition theorem for Bessel functions is given in Abramowitz and Stegun 1964. It is a special case of a general addition theorem called Neumann's addition theorem. Details can be found in Abramowitz and Stegun 1964 online. We express the theorem in the following form
where [math]\displaystyle{ C_\nu }[/math] can represent any of the Bessel functions [math]\displaystyle{ \,\!J_\nu }[/math], [math]\displaystyle{ \,\!I_\nu }[/math], [math]\displaystyle{ \,\!Y_\nu }[/math], [math]\displaystyle{ \,\!K_\nu }[/math], [math]\displaystyle{ H_\nu^{(1)} }[/math], and [math]\displaystyle{ H_\nu^{(2)} }[/math], [math]\displaystyle{ (r_j,\theta_j)\,\! }[/math] and [math]\displaystyle{ (r_l,\theta_l)\,\! }[/math] are polar coordinates centred at two different positions with global coordinates [math]\displaystyle{ \boldsymbol{O}_j }[/math], [math]\displaystyle{ \boldsymbol{O}_l }[/math], and [math]\displaystyle{ (R_{jl},\vartheta_{jl}) }[/math] are the polar coordinates of [math]\displaystyle{ \boldsymbol{O}_l }[/math] with respect to [math]\displaystyle{ \boldsymbol{O}_j }[/math]. This expression is valid only provided that [math]\displaystyle{ \,\!r_l \lt R_{jl} }[/math] ( although this restriction is unnecessary if [math]\displaystyle{ \,\!C=J }[/math] and [math]\displaystyle{ \,\!\nu }[/math] is an integer).
Explicit versions of the theorem are given below,
This theorem form the basis for Kagemoto and Yue Interaction Theory.