Difference between revisions of "Template:Separation of variables for a dock"
From WikiWaves
Jump to navigationJump to searchMike smith (talk | contribs) m (clarification and tidy up) |
|||
(7 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | == Separation of Variables for a Dock == | + | === Separation of Variables for a Dock === |
− | The separation of variables equation for a dock | + | The separation of variables equation for a floating dock |
<center> | <center> | ||
<math> | <math> | ||
− | + | Z^{\prime\prime} + k^2 Z =0, | |
</math> | </math> | ||
</center> | </center> | ||
Line 11: | Line 11: | ||
<center> | <center> | ||
<math> | <math> | ||
− | \ | + | Z^{\prime} (-h) = 0, |
</math> | </math> | ||
</center> | </center> | ||
Line 17: | Line 17: | ||
<center> | <center> | ||
<math> | <math> | ||
− | \ | + | Z^{\prime} (0) = 0. |
</math> | </math> | ||
</center> | </center> | ||
The solution is | The solution is | ||
− | <math>\kappa_{m}=m\pi | + | <math>k=\kappa_{m}= \frac{m\pi}{h} \,</math>, <math>m\geq 0</math> and |
<center> | <center> | ||
<math> | <math> | ||
− | \ | + | Z = \psi_{m}\left( z\right) = \cos\kappa_{m}(z+h),\quad |
+ | m\geq 0. | ||
</math> | </math> | ||
</center> | </center> | ||
− | + | We note that | |
− | |||
<center> | <center> | ||
<math> | <math> | ||
− | + | \int\nolimits_{-h}^{0}\psi_{m}(z)\psi_{n}(z) \mathrm{d} z=C_{m}\delta_{mn}, | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | \int\nolimits_{-h}^{0}\ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
</math> | </math> | ||
</center> | </center> | ||
where | where | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<center> | <center> | ||
<math> | <math> | ||
− | + | C_{m} = | |
+ | \begin{cases} | ||
+ | h,\quad m=0 \\ | ||
+ | \frac{1}{2}h,\,\,\,m\neq 0 | ||
+ | \end{cases} | ||
</math> | </math> | ||
</center> | </center> | ||
− | |||
− | |||
− | |||
− | |||
− |
Latest revision as of 23:20, 8 August 2009
Separation of Variables for a Dock
The separation of variables equation for a floating dock
[math]\displaystyle{ Z^{\prime\prime} + k^2 Z =0, }[/math]
subject to the boundary conditions
[math]\displaystyle{ Z^{\prime} (-h) = 0, }[/math]
and
[math]\displaystyle{ Z^{\prime} (0) = 0. }[/math]
The solution is [math]\displaystyle{ k=\kappa_{m}= \frac{m\pi}{h} \, }[/math], [math]\displaystyle{ m\geq 0 }[/math] and
[math]\displaystyle{ Z = \psi_{m}\left( z\right) = \cos\kappa_{m}(z+h),\quad m\geq 0. }[/math]
We note that
[math]\displaystyle{ \int\nolimits_{-h}^{0}\psi_{m}(z)\psi_{n}(z) \mathrm{d} z=C_{m}\delta_{mn}, }[/math]
where
[math]\displaystyle{ C_{m} = \begin{cases} h,\quad m=0 \\ \frac{1}{2}h,\,\,\,m\neq 0 \end{cases} }[/math]