Difference between revisions of "Template:Separation of variables for a submerged dock"

From WikiWaves
Jump to navigationJump to search
(re-expressed mu, removed double up)
m (grammar)
 
Line 1: Line 1:
 
The depth above the plate is <math>d</math> and below the plate is <math>h-d</math>. We introduce
 
The depth above the plate is <math>d</math> and below the plate is <math>h-d</math>. We introduce
a new dispersion value <math>\mu_n</math> where
+
a new dispersion value <math>\mu_n</math>:
 
<center>
 
<center>
 
<math>
 
<math>
Line 12: Line 12:
  
 
where <math>k_n^{d}</math> are the roots of the [[Dispersion Relation for a Free Surface ]] with depth <math>d</math>.  
 
where <math>k_n^{d}</math> are the roots of the [[Dispersion Relation for a Free Surface ]] with depth <math>d</math>.  
We also order the roots with the first the positive imaginary solution <math>k_0^{d}</math> and
+
We also order the roots with the first being the positive imaginary solution <math>k_0^{d}</math>,
the second being zero, then order by increasing size. We then define a new function
+
the second being zero, then ordering by increasing size. We then define a new function
 
<center>
 
<center>
 
<math>
 
<math>

Latest revision as of 23:50, 8 August 2009

The depth above the plate is [math]\displaystyle{ d }[/math] and below the plate is [math]\displaystyle{ h-d }[/math]. We introduce a new dispersion value [math]\displaystyle{ \mu_n }[/math]:

[math]\displaystyle{ \mu_n = \begin{cases} k_n^{d},\qquad \qquad\mbox{for}\,\, 0 \leq n \leq N-M\\ n\pi/(h-d),\,\,\mbox{otherwise} \end{cases} }[/math]

where [math]\displaystyle{ k_n^{d} }[/math] are the roots of the Dispersion Relation for a Free Surface with depth [math]\displaystyle{ d }[/math]. We also order the roots with the first being the positive imaginary solution [math]\displaystyle{ k_0^{d} }[/math], the second being zero, then ordering by increasing size. We then define a new function

[math]\displaystyle{ \chi_n = \begin{cases} 0,\,\,\, \qquad-d\lt z\lt 0 \\ \psi_{n}(z),\,\,\,-h\lt z\lt -d \end{cases} }[/math]

or

[math]\displaystyle{ \chi_{n} = \begin{cases} \phi_{n}^{d}(z),\,\,\,-d\lt z\lt 0 \\ 0,\,\,\qquad-h\lt z\lt -d \end{cases} }[/math]

where

[math]\displaystyle{ \phi_{m}^{d}\left( z\right) =\frac{\cos k_{m}^{d}(z+d)}{\cos k_{m}^{d}d},\quad m\geq0 }[/math]

depending on whether the root [math]\displaystyle{ \mu_n }[/math] is above or below.