Difference between revisions of "Frequency Domain Problem"

From WikiWaves
Jump to navigationJump to search
m
 
(9 intermediate revisions by 2 users not shown)
Line 1: Line 1:
This is closely connected with the [[Fourier Transform in Time]]. Essentially after this
+
{{complete pages}}
we are left we a problem in which all time dependence is
 
  
<math>e^{i\omega t}</math>
+
It is standard in linear water wave theory to take a
 +
[http://en.wikipedia.org/wiki/Fourier_Transform Fourier Transform] in time and assume
 +
that the solution for the real velocity potential <math>\Phi(x,y,z,t)</math>
 +
can be written as
 +
<center>
 +
<math>\Phi(x,y,z,t) = \phi(x,y,z) e^{-\mathrm{i}\omega t} \,</math>
 +
</center>
 +
where <math>\omega</math> is the real  and <math>\phi(x,y,z)</math>
 +
is a complex function. This means that any time derivative
 +
can simply we replaced by multiplication by <math>i \omega</math> (this only works
 +
because of the linearity in time).
 +
Sometimes it is assumed that the exponential is positive(but this is not the convention used here.
  
and the resultant problem is said to be in the frequency domain (as opposed to the time domian).
+
The problem is now said to be a frequency domain problem.
In many practical applications this is the only solution required. i.e. engineers simply want
+
 
a table of force as a function of frequency.
+
[[Category:Linear Water-Wave Theory]]

Latest revision as of 09:30, 28 April 2010


It is standard in linear water wave theory to take a Fourier Transform in time and assume that the solution for the real velocity potential [math]\displaystyle{ \Phi(x,y,z,t) }[/math] can be written as

[math]\displaystyle{ \Phi(x,y,z,t) = \phi(x,y,z) e^{-\mathrm{i}\omega t} \, }[/math]

where [math]\displaystyle{ \omega }[/math] is the real and [math]\displaystyle{ \phi(x,y,z) }[/math] is a complex function. This means that any time derivative can simply we replaced by multiplication by [math]\displaystyle{ i \omega }[/math] (this only works because of the linearity in time). Sometimes it is assumed that the exponential is positive(but this is not the convention used here.

The problem is now said to be a frequency domain problem.