|
|
(66 intermediate revisions by 5 users not shown) |
Line 2: |
Line 2: |
| | | |
| This is an interaction theory which provides the exact solution (i.e. it is not based on a [[Wide Spacing Approximation]]). | | This is an interaction theory which provides the exact solution (i.e. it is not based on a [[Wide Spacing Approximation]]). |
− | The theory uses the [[Cylindrical Eigenfunction Expansion]] and [[Graf's Addition Theorem]] to represent the potential in local coordinates. The incident and scattered potential of each body are then related by the associated [[Diffraction Transfer Matrix]]. | + | The theory uses the [[Cylindrical Eigenfunction Expansion]] and [[Graf's Addition Theorem]] to represent the potential in local coordinates. The incident and scattered potential of each body are then related by the associated [[Diffraction Transfer Matrix]]. [[Interaction Theory for Cylinders]] presents a simplified version for cylinders. |
| | | |
− | The basic idea is as follows: The scattered potential of each body is represented in the [[Cylindrical Eigenfunction Expansion]] associated with the local coordinates centred at the mean centre position of the body. Using [[Graf's Addition Theorem]], the scattered potential of all bodies (given in their local coordinates) can be mapped to an incident potential associated with the coordiates of all other bodies. Doing this, the incident potential of each body (which is given by the ambient incident potential plus the scattered potentials of all other bodies) is given in the [[Cylindrical Eigenfunction Expansion]] associated with its local coordinates. Using the [[Diffraction Transfer Matrix]], which relates the incident and scattered potential of each body in isolation, a system of equations for the coefficients of the scattered potentials of all bodies is obtained. | + | The basic idea is as follows: The scattered potential of each body is represented in the [[Cylindrical Eigenfunction Expansion]] associated with the local coordinates centred at the mean centre position of the body. Using [[Graf's Addition Theorem]], the scattered potential of all bodies (given in their local coordinates) can be mapped to an incident potential associated with the coordinates of all other bodies. Doing this, the incident potential of each body (which is given by the ambient incident potential plus the scattered potentials of all other bodies) is given in the [[Cylindrical Eigenfunction Expansion]] associated with its local coordinates. Using the [[Diffraction Transfer Matrix]], which relates the incident and scattered potential of each body in isolation, a system of equations for the coefficients of the scattered potentials of all bodies is obtained. |
| | | |
| The theory is described in [[Kagemoto and Yue 1986]] and in | | The theory is described in [[Kagemoto and Yue 1986]] and in |
− | [[Peter and Meylan 2004]]. | + | [[Peter and Meylan 2004]]. |
| + | |
| + | The derivation of the theory in [[Infinite Depth]] is also presented, see |
| + | [[Kagemoto and Yue Interaction Theory for Infinite Depth]]. |
| | | |
− | [[Category:Linear Water-Wave Theory]] | + | [[Category:Interaction Theory]] |
| | | |
| = Equations of Motion = | | = Equations of Motion = |
| | | |
− | We assume
| + | The problem consists of <math>n</math> bodies |
− | the [[Frequency Domain Problem]] with frequency <math>\omega</math>. | + | <math>\Delta_j</math> with immersed body |
| + | surface <math>\Gamma_j</math>. Each body is subject to |
| + | the [[Standard Linear Wave Scattering Problem]] and the particluar |
| + | equations of motion for each body (e.g. rigid, or freely floating) |
| + | can be different for each body. |
| + | It is a [[Frequency Domain Problem]] with frequency <math>\omega</math>. |
| + | The solution is exact, up to the |
| + | restriction that the escribed cylinder of each body may not contain any |
| + | other body. |
| To simplify notation, <math>\mathbf{y} = (x,y,z)</math> always denotes a point | | To simplify notation, <math>\mathbf{y} = (x,y,z)</math> always denotes a point |
− | in the water, which is assumed to be of [[Finite Depth]] <math>d</math>, | + | in the water, which is assumed to be of [[Finite Depth]] <math>h</math>, |
| while <math>\mathbf{x}</math> always denotes a point of the undisturbed water | | while <math>\mathbf{x}</math> always denotes a point of the undisturbed water |
| surface assumed at <math>z=0</math>. | | surface assumed at <math>z=0</math>. |
| | | |
− | Writing <math>\alpha = \omega^2/g</math> where <math>g</math> is the acceleration due to
| + | {{standard linear wave scattering equations}} |
− | gravity, the potential <math>\phi</math> has to
| + | |
− | satisfy the standard boundary-value problem
| + | The [[Sommerfeld Radiation Condition]] is also imposed. |
− | <center><math>
| |
− | \nabla^2 \phi = 0, \; \mathbf{y} \in D
| |
− | </math></center>
| |
− | <center><math>
| |
− | \frac{\partial \phi}{\partial z} = \alpha \phi, \;
| |
− | {\mathbf{x}} \in \Gamma^\mathrm{f},
| |
− | </math></center>
| |
− | <center><math>
| |
− | \frac{\partial \phi}{\partial z} = 0, \; \mathbf{y} \in D, \ z=-d,
| |
− | </math></center>
| |
− | where <math>D</math> is the
| |
− | is the domain occupied by the water and
| |
− | <math>\Gamma^\mathrm{f}</math> is the free water surface. At the immersed body
| |
− | surface <math>\Gamma_j</math> of <math>\Delta_j</math>, the water velocity potential has to
| |
− | equal the normal velocity of the body <math>\mathbf{v}_j</math>,
| |
− | <center><math>
| |
− | \frac{\partial \phi}{\partial n} = \mathbf{v}_j, \; {\mathbf{y}}
| |
− | \in \Gamma_j.
| |
− | </math></center>
| |
− | Moreover, the [[Sommerfeld Radiation Condition]] is imposed
| |
− | <center><math>
| |
− | \lim_{\tilde{r} \rightarrow \infty} \sqrt{\tilde{r}} \, \Big(
| |
− | \frac{\partial}{\partial \tilde{r}} - \mathrm{i}k
| |
− | \Big) (\phi - \phi^{\mathrm{In}}) = 0,
| |
− | </math></center>
| |
− | where <math>\tilde{r}^2=x^2+y^2</math>, <math>k</math> is the wavenumber and
| |
− | <math>\phi^\mathrm{In}</math> is the ambient incident potential. The
| |
− | positive wavenumber <math>k</math>
| |
− | is related to <math>\alpha</math> by the [[Dispersion Relation for a Free Surface]]
| |
− | <center><math> (eq_k)
| |
− | \alpha = k \tanh k d,
| |
− | </math></center>
| |
− | and the values of <math>k_m</math>, <math>m>0</math>, are given as positive real roots of
| |
− | the dispersion relation
| |
− | <center><math> (eq_km)
| |
− | \alpha + k_m \tan k_m d = 0.
| |
− | </math></center>
| |
− | For ease of notation, we write <math>k_0 = -\mathrm{i}k</math>. Note that <math>k_0</math> is a
| |
− | (purely imaginary) root of (eq_k_m).
| |
| | | |
| =Eigenfunction expansion of the potential= | | =Eigenfunction expansion of the potential= |
| | | |
| + | Each body is subject to an incident potential and moves in response to this |
| + | incident potential to produce a scattered potential. Each of these is |
| + | expanded using the [[Cylindrical Eigenfunction Expansion]] |
| The scattered potential of a body | | The scattered potential of a body |
− | <math>\Delta_j</math> can be expanded in singular cylindrical eigenfunctions, | + | <math>\Delta_j</math> can be expressed as |
− | <center><math> (basisrep_out_d) | + | <center><math> |
| \phi_j^\mathrm{S} (r_j,\theta_j,z) = | | \phi_j^\mathrm{S} (r_j,\theta_j,z) = |
| \sum_{m=0}^{\infty} f_m(z) \sum_{\mu = - | | \sum_{m=0}^{\infty} f_m(z) \sum_{\mu = - |
| \infty}^{\infty} A_{m \mu}^j K_\mu (k_m r_j) \mathrm{e}^{\mathrm{i}\mu \theta_j}, | | \infty}^{\infty} A_{m \mu}^j K_\mu (k_m r_j) \mathrm{e}^{\mathrm{i}\mu \theta_j}, |
| </math></center> | | </math></center> |
− | with discrete coefficients <math>A_{m \mu}^j</math>, where | + | with discrete coefficients <math>A_{m \mu}^j</math>, where <math>(r_j,\theta_j,z)</math> |
| + | are cylindrical polar coordinates centered at each body |
| <center><math> | | <center><math> |
− | f_m(z) = \frac{\cos k_m (z+d)}{\cos k_m d}. | + | f_m(z) = \frac{\cos k_m (z+h)}{\cos k_m h}. |
| </math></center> | | </math></center> |
| + | where <math>k_m</math> are found from <math>\alpha</math> by the [[Dispersion Relation for a Free Surface]] |
| + | <center><math> |
| + | \alpha + k_m \tan k_m h = 0\,. |
| + | </math></center> |
| + | where <math>k_0</math> is the |
| + | imaginary root with negative imaginary part |
| + | and <math>k_m</math>, <math>m>0</math>, are given the positive real roots ordered |
| + | with increasing size. |
| + | |
| The incident potential upon body <math>\Delta_j</math> can be also be expanded in | | The incident potential upon body <math>\Delta_j</math> can be also be expanded in |
| regular cylindrical eigenfunctions, | | regular cylindrical eigenfunctions, |
− | <center><math> (basisrep_in_d) | + | <center><math> |
| \phi_j^\mathrm{I} (r_j,\theta_j,z) = \sum_{n=0}^{\infty} f_n(z) | | \phi_j^\mathrm{I} (r_j,\theta_j,z) = \sum_{n=0}^{\infty} f_n(z) |
| \sum_{\nu = - \infty}^{\infty} D_{n\nu}^j I_\nu (k_n r_j) \mathrm{e}^{\mathrm{i}\nu \theta_j}, | | \sum_{\nu = - \infty}^{\infty} D_{n\nu}^j I_\nu (k_n r_j) \mathrm{e}^{\mathrm{i}\nu \theta_j}, |
| </math></center> | | </math></center> |
| with discrete coefficients <math>D_{n\nu}^j</math>. In these expansions, <math>I_\nu</math> | | with discrete coefficients <math>D_{n\nu}^j</math>. In these expansions, <math>I_\nu</math> |
− | and <math>K_\nu</math> denote the modified Bessel functions of the first and | + | and <math>K_\nu</math> denote the modified [http://en.wikipedia.org/wiki/Bessel_function : Bessel functions] |
− | second kind, respectively, both of order <math>\nu</math>. | + | of the first and second kind, respectively, both of order <math>\nu</math>. |
− | Note that in (basisrep_out_d) (and (basisrep_in_d)) the term for <math>m =0<math> (
| |
− | <math>n=0</math>) corresponds to the propagating modes while the
| |
− | terms for <math>m\geq 1</math> (<math>n\geq 1</math>) correspond to the evanescent modes. For
| |
− | future reference, we remark that, for real <math>x</math>,
| |
− | <center><math> (H_K)
| |
− | K_\nu (-\mathrm{i}x) = \frac{\pi i^{\nu+1}}{2} H_\nu^{(1)}(x) \quad
| |
− | =and= \quad
| |
− | I_\nu (-\mathrm{i}x) = i^{-\nu} J_\nu(x)
| |
− | </math></center>
| |
− | with <math>H_\nu^{(1)}</math> and <math>J_\nu</math> denoting the Hankel function and the
| |
− | Bessel function, respectively, both of first kind and order <math>\nu</math>.
| |
− | | |
− | = Representation of the ambient wavefield in the eigenfunction representation =
| |
| | | |
− | In Cartesian coordinates centred at the origin, the ambient wavefield is
| + | Note that the term for <math>m =0</math> or |
− | given by
| + | <math>n=0</math> corresponds to the propagating modes while the |
− | <center><math>
| + | terms for <math>m\geq 1</math> (<math>n\geq 1</math>) correspond to the evanescent modes. |
− | \phi^{\mathrm{In}}(x,y,z) = \frac{A g}{\omega}
| |
− | | |
− | f_0(z) \mathrm{e}^{\mathrm{i}k (x \cos \chi + y \sin \chi)},
| |
− | </math></center> | |
− | where <math>A</math> is the amplitude (in displacement) and <math>\chi</math> is the
| |
− | angle between the <math>x</math>-axis and the direction in which the wavefield
| |
− | travels (also cf.~figure (fig:floes)).
| |
− | This expression can be written in the eigenfunction expansion
| |
− | centred at the origin as
| |
− | <center><math>
| |
− | \phi^{\mathrm{In}}(r,\theta,z) = \frac{A g}{\omega}
| |
− | | |
− | f_0(z)
| |
− | \sum_{\nu = -\infty}^{\infty} \mathrm{e}^{\mathrm{i}\nu (\pi/2 - \theta + \chi)} J_\nu(k r)
| |
− | </math></center>
| |
− | \cite[p.~169]{linton01}.
| |
− | The local coordinates of each body are centred at their mean-centre
| |
− | positions <math>O_l = (l R,0)</math>.
| |
− | In order to represent the ambient wavefield, which is
| |
− | incident upon all bodies, in the eigenfunction expansion of an
| |
− | incoming wave in the local coordinates of the body, a phase factor has to be
| |
− | defined,
| |
− | <center><math> (phase_factor)
| |
− | P_l = \mathrm{e}^{\mathrm{i}l R k \cos \chi},
| |
− | </math></center> | |
− | which accounts for the position from the origin. Including this phase
| |
− | factor and
| |
− | making use of (H_K), the ambient wavefield at the <math>l</math>th body is given by
| |
− | <center><math>
| |
− | \phi^{\mathrm{In}}(r_l,\theta_l,z) = \frac{A g}{\omega} \, P_l \,
| |
− | f_0(z) \sum_{\nu = -\infty}^{\infty}
| |
− | \mathrm{e}^{\mathrm{i}\nu (\pi - \chi)} I_\nu(k_0 r_l) \mathrm{e}^{\mathrm{i}\nu \theta_l}.
| |
− | </math></center>
| |
− | We can therefore define the coefficients of the ambient wavefield in
| |
− | the eigenfunction expansion of an incident wave,
| |
− | <center><math>
| |
− | \tilde{D}^l_{n\nu} =
| |
− | \begin{cases}
| |
− | \frac{A g}{\omega} P_l \mathrm{e}^{\mathrm{i}\nu (\pi - \chi)}, & n=0,\\
| |
− | 0, & n > 0.
| |
− | \end{cases}
| |
− | </math></center>
| |
− | Note that the evanescent coefficients are all zero due to the
| |
− | propagating nature of the ambient wave.
| |
| | | |
| =Derivation of the system of equations= | | =Derivation of the system of equations= |
| | | |
− | Following the ideas of general interaction theories
| + | A system of equations for the unknown |
− | \cite[]{kagemoto86,JFM04}, a system of equations for the unknown
| + | coefficients of the |
− | coefficients (in the expansion (basisrep_out_d)) of the | |
| scattered wavefields of all bodies is developed. This system of | | scattered wavefields of all bodies is developed. This system of |
| equations is based on transforming the | | equations is based on transforming the |
Line 163: |
Line 90: |
| The scattered potential <math>\phi_j^{\mathrm{S}}</math> of body <math>\Delta_j</math> needs to be | | The scattered potential <math>\phi_j^{\mathrm{S}}</math> of body <math>\Delta_j</math> needs to be |
| represented in terms of the incident potential <math>\phi_l^{\mathrm{I}}</math> | | represented in terms of the incident potential <math>\phi_l^{\mathrm{I}}</math> |
− | upon <math>\Delta_l</math>, <math>j \neq l</math>. From figure | + | upon <math>\Delta_l</math>, <math>j \neq l</math>. This can be accomplished by using |
− | (fig:floes) we can see that this can be accomplished by using
| |
| [[Graf's Addition Theorem]] | | [[Graf's Addition Theorem]] |
− | <center><math> (transf)
| |
− | K_\tau(k_m r_j) \mathrm{e}^{\mathrm{i}\tau (\theta_j-\varphi_{j-l})} =
| |
− | \sum_{\nu = - \infty}^{\infty} K_{\tau + \nu} (k_m |j-l|R) \,
| |
− | I_\nu (k_m r_l) \mathrm{e}^{\mathrm{i}\nu (\pi - \theta_l + \varphi_{j-l})}, \quad j \neq l,
| |
− | </math></center>
| |
− | which is valid provided that <math>r_l < R</math>. The angles <math>\varphi_{n}</math>
| |
− | account for the difference in direction depending if the <math>j</math>th body is
| |
− | located to the left or to the right of the <math>l</math>th body and are
| |
− | defined by
| |
| <center><math> | | <center><math> |
− | \varphi_n = | + | K_\tau(k_m r_j) \mathrm{e}^{\mathrm{i}\tau (\theta_j-\varphi_{jl})} = |
− | \begin{cases} | + | \sum_{\nu = - \infty}^{\infty} K_{\tau + \nu} (k_m R_{jl}) \, |
− | \pi, & n > 0,\\ | + | I_\nu (k_m r_l) \mathrm{e}^{\mathrm{i}\nu (\pi - \theta_l + \varphi_{jl})}, \quad j \neq l, |
− | 0, & n < 0.
| |
− | \end{cases} | |
| </math></center> | | </math></center> |
− | The limitation <math>r_l < R</math> only requires that the escribed cylinder of each body | + | which is valid provided that <math>r_l < R_{jl}</math>. Here, <math>(R_{jl},\varphi_{jl})</math> are the polar coordinates of the mean centre position of <math>\Delta_{l}</math> in the local coordinates of <math>\Delta_{j}</math>. |
| + | |
| + | The limitation <math>r_l < R_{jl}</math> only requires that the escribed cylinder of each body |
| <math>\Delta_l</math> does not enclose any other origin <math>O_j</math> (<math>j \neq l</math>). However, the | | <math>\Delta_l</math> does not enclose any other origin <math>O_j</math> (<math>j \neq l</math>). However, the |
| expansion of the scattered and incident potential in cylindrical | | expansion of the scattered and incident potential in cylindrical |
Line 192: |
Line 109: |
| other body. | | other body. |
| | | |
− | Making use of the eigenfunction expansion as well as equation (transf), the scattered potential | + | Making use of the eigenfunction expansion as well as [[Graf's Addition Theorem]], the scattered potential |
− | of <math>\Delta_j</math> (cf.~ (basisrep_out_d)) can be expressed in terms of the | + | of <math>\Delta_j</math> can be expressed in terms of the |
| incident potential upon <math>\Delta_l</math> as | | incident potential upon <math>\Delta_l</math> as |
− | <center><math>\begin{matrix} | + | <center><math> |
| \phi_j^{\mathrm{S}} (r_l,\theta_l,z) | | \phi_j^{\mathrm{S}} (r_l,\theta_l,z) |
− | &= \sum_{m=0}^\infty f_m(z) \sum_{\tau = -
| + | = \sum_{m=0}^\infty f_m(z) \sum_{\tau = - |
| \infty}^{\infty} A_{m\tau}^j \sum_{\nu = -\infty}^{\infty} | | \infty}^{\infty} A_{m\tau}^j \sum_{\nu = -\infty}^{\infty} |
− | (-1)^\nu K_{\tau-\nu} (k_m |j-l| R) I_\nu (k_m r_l) \mathrm{e}^{\mathrm{i}\nu | + | (-1)^\nu K_{\tau-\nu} (k_m R_{jl}) I_\nu (k_m r_l) \mathrm{e}^{\mathrm{i}\nu |
− | \theta_l} \mathrm{e}^{\mathrm{i}(\tau-\nu) \varphi_{j-l}} \\ | + | \theta_l} \mathrm{e}^{\mathrm{i}(\tau-\nu) \varphi_{jl}} |
− | &= \sum_{m=0}^\infty f_m(z) \sum_{\nu =
| + | </math></center> |
| + | <center><math> |
| + | = \sum_{m=0}^\infty f_m(z) \sum_{\nu = |
| -\infty}^{\infty} \Big[ \sum_{\tau = - \infty}^{\infty} A_{m\tau}^j | | -\infty}^{\infty} \Big[ \sum_{\tau = - \infty}^{\infty} A_{m\tau}^j |
− | (-1)^\nu K_{\tau-\nu} (k_m |j-l| R) \mathrm{e}^{\mathrm{i}(\tau - \nu) | + | (-1)^\nu K_{\tau-\nu} (k_m R_{jl}) \mathrm{e}^{\mathrm{i}(\tau - \nu) |
− | \varphi_{j-l}} \Big] I_\nu (k_m r_l) \mathrm{e}^{\mathrm{i}\nu \theta_l}. | + | \varphi_{jl}} \Big] I_\nu (k_m r_l) \mathrm{e}^{\mathrm{i}\nu \theta_l}. |
− | \end{matrix}</math></center>
| + | </math></center> |
| The ambient incident wavefield <math>\phi^{\mathrm{In}}</math> can also be | | The ambient incident wavefield <math>\phi^{\mathrm{In}}</math> can also be |
| expanded in the eigenfunctions corresponding to the incident wavefield upon | | expanded in the eigenfunctions corresponding to the incident wavefield upon |
| <math>\Delta_l</math>. Let <math>\tilde{D}_{n\nu}^{l}</math> denote the coefficients of this | | <math>\Delta_l</math>. Let <math>\tilde{D}_{n\nu}^{l}</math> denote the coefficients of this |
| ambient incident wavefield in the incoming eigenfunction expansion for | | ambient incident wavefield in the incoming eigenfunction expansion for |
− | <math>\Delta_l</math> (cf.~\S (sec:ambient)). The total | + | <math>\Delta_l</math> (cf. the example in [[Cylindrical Eigenfunction Expansion]]). |
− | incident wavefield upon body <math>\Delta_j</math> can now be expressed as
| + | <center><math> |
− | <center><math>\begin{matrix} | + | \phi^{\mathrm{In}}(r_l,\theta_l,z)= \sum_{n=0}^\infty f_n(z) \sum_{\nu = -\infty}^{\infty} |
− | \phi_l^{\mathrm{I}}(r_l,\theta_l,z) &= \phi^{\mathrm{In}}(r_l,\theta_l,z) +
| + | \tilde{D}_{n\nu}^{l} I_\nu (k_n |
− | \sum_{j=-\infty,j \neq l}^{\infty} \, \phi_j^{\mathrm{S}}
| |
− | (r_l,\theta_l,z)\\
| |
− | &= \sum_{n=0}^\infty f_n(z) \sum_{\nu = -\infty}^{\infty}
| |
− | \Big[ \tilde{D}_{n\nu}^{l} +
| |
− | \sum_{j=-\infty,j \neq l}^{\infty} \sum_{\tau =
| |
− | -\infty}^{\infty} A_{n\tau}^j (-1)^\nu K_{\tau - \nu} (k_n
| |
− | |j-l|R) \mathrm{e}^{\mathrm{i}(\tau - \nu) \varphi_{j-l}} \Big] \times I_\nu (k_n
| |
| r_l) \mathrm{e}^{\mathrm{i}\nu \theta_l}. | | r_l) \mathrm{e}^{\mathrm{i}\nu \theta_l}. |
− | \end{matrix}</math></center>
| |
− | The coefficients of the total incident potential upon <math>\Delta_l</math> are
| |
− | therefore given by
| |
− | <center><math> (inc_coeff)
| |
− | D_{n\nu}^l = \tilde{D}_{n\nu}^{l} +
| |
− | \sum_{j=-\infty,j \neq l}^{\infty} \sum_{\tau =
| |
− | -\infty}^{\infty} A_{n\tau}^j (-1)^\nu K_{\tau - \nu} (k_n
| |
− | |j-l| R) \mathrm{e}^{\mathrm{i}(\tau - \nu) \varphi_{j-l}}.
| |
| </math></center> | | </math></center> |
− | | + | The total |
− | ==Calculation of the diffraction transfer matrix for bodies of arbitrary geometry==
| + | incident wavefield upon body <math>\Delta_j</math> can now be expressed as |
− | | |
− | The scattered and incident potential can therefore be related by a | |
− | diffraction transfer operator acting in the following way,
| |
− | <center><math> (diff_op)
| |
− | A_{m \mu}^l = \sum_{n=0}^{\infty} \sum_{\nu = -\infty}^{\infty} B_{m n
| |
− | \mu \nu} D_{n\nu}^l.
| |
− | </math></center>
| |
− | | |
− | Before we can apply the interaction theory we require the diffraction
| |
− | transfer matrices <math>\mathbf{B}_j</math> which relate the incident and the
| |
− | scattered potential for a body <math>\Delta_j</math> in isolation.
| |
− | The elements of the diffraction transfer matrix, <math>({\mathbf B}_j)_{pq}</math>,
| |
− | are the coefficients of the
| |
− | <math>p</math>th partial wave of the scattered potential due to a single
| |
− | unit-amplitude incident wave of mode <math>q</math> upon <math>\Delta_j</math>.
| |
− | | |
− | While \citeauthor{kagemoto86}'s interaction theory was valid for
| |
− | bodies of arbitrary shape, they did not explain how to actually obtain the
| |
− | diffraction transfer matrices for bodies which did not have an axisymmetric
| |
− | geometry. This step was performed by [[goo90]] who came up with an
| |
− | explicit method to calculate the diffraction transfer matrices for bodies of
| |
− | arbitrary geometry in the case of finite depth. Utilising a Green's
| |
− | function they used the standard
| |
− | method of transforming the single diffraction boundary-value problem
| |
− | to an integral equation for the source strength distribution function
| |
− | over the immersed surface of the body.
| |
− | However, the representation of the scattered potential which
| |
− | is obtained using this method is not automatically given in the
| |
− | cylindrical eigenfunction
| |
− | expansion. To obtain such cylindrical eigenfunction expansions of the
| |
− | potential [[goo90]] used the representation of the free surface
| |
− | finite depth Green's function given by [[black75]] and
| |
− | [[fenton78]]. \citeauthor{black75} and
| |
− | \citeauthor{fenton78}'s representation of the Green's function was based
| |
− | on applying Graf's addition theorem to the eigenfunction
| |
− | representation of the free surface finite depth Green's function given
| |
− | by [[john2]]. Their representation allowed the scattered potential to be
| |
− | represented in the eigenfunction expansion with the cylindrical
| |
− | coordinate system fixed at the point of the water surface above the
| |
− | mean centre position of the body.
| |
− | | |
− | It should be noted that, instead of using the source strength distribution
| |
− | function, it is also possible to consider an integral equation for the
| |
− | total potential and calculate the elements of the diffraction transfer
| |
− | matrix from the solution of this integral equation.
| |
− | An outline of this method for water of finite
| |
− | depth is given by [[kashiwagi00]]. We will present
| |
− | here a derivation of the diffraction transfer matrices for the case
| |
− | infinite depth based on a solution
| |
− | for the source strength distribution function. However,
| |
− | an equivalent derivation would be possible based on the solution
| |
− | for the total velocity potential.
| |
− | | |
− | The [[Free-Surface Green Function]] for [[Finite Depth]]
| |
− | in cylindrical polar coordinates
| |
| <center><math> | | <center><math> |
− | G(r,\theta,z;s,\varphi,c)= \frac{1}{\pi} \sum_{m=0}^{\infty}
| + | \phi_l^{\mathrm{I}}(r_l,\theta_l,z) = \phi^{\mathrm{In}}(r_l,\theta_l,z) + |
− | \frac{k_m^2+\alpha^2}{d(k_m^2+\alpha^2)-\alpha}\, \cos k_m(z+d) \cos
| + | \sum_{j=1,j \neq l}^{N} \, \phi_j^{\mathrm{S}} |
− | k_m(c+d) \sum_{\nu=-\infty}^{\infty} K_\nu(k_m r) I_\nu(k_m s) \mathrm{e}^{\mathrm{i}\nu
| + | (r_l,\theta_l,z) |
− | (\theta - \varphi)}, | |
| </math></center> | | </math></center> |
− | given by [[Black 1975]] and [[Fenton 1978]] is used.
| + | This allows us to write |
− | The elements of <math>{\mathbf B}_j</math> are therefore given by
| |
| <center><math> | | <center><math> |
− | ({\mathbf B}_j)_{pq} = \frac{1}{\pi}
| + | \sum_{n=0}^{\infty} f_n(z) |
− | \frac{(k_m^2+\alpha^2)\cos^2 k_md}{d(k_m^2+\alpha^2)-\alpha} | + | \sum_{\nu = - \infty}^{\infty} D_{n\nu}^l I_\nu (k_n r_l) \mathrm{e}^{\mathrm{i}\nu \theta_l} |
− | \int\limits_{\Gamma_j} \cos k_m(c+d) I_p(\eta s) \mathrm{e}^{-\mathrm{i}p
| |
− | \varphi} \varsigma_q^j(\mathbf{\zeta}) \mathrm{d}\sigma_\mathbf{\zeta}
| |
| </math></center> | | </math></center> |
− | where
| |
− | <math>\varsigma_q^j(\mathbf{\zeta})</math> is the source strength distribution
| |
− | due to an incident potential of mode <math>q</math> of the form
| |
| <center><math> | | <center><math> |
− | \phi_q^{\mathrm{I}}(s,\varphi,c) = \frac{\cos k_m(c+d)}{\cos kd} K_q | + | = \sum_{n=0}^\infty f_n(z) \sum_{\nu = -\infty}^{\infty} |
− | (k_m s) \mathrm{e}^{\mathrm{i}q \varphi}
| + | \Big[ \tilde{D}_{n\nu}^{l} + |
| + | \sum_{j=1,j \neq l}^{N} \sum_{\tau = |
| + | -\infty}^{\infty} A_{n\tau}^j (-1)^\nu K_{\tau - \nu} (k_n |
| + | R_{jl}) \mathrm{e}^{\mathrm{i}(\tau - \nu) \varphi_{jl}} \Big] I_\nu (k_n |
| + | r_l) \mathrm{e}^{\mathrm{i}\nu \theta_l}. |
| </math></center> | | </math></center> |
− | | + | It therefore follows that |
− | We assume that we have represented the scattered potential in terms of
| |
− | the source strength distribution <math>\varsigma^j</math> so that the scattered
| |
− | potential can be written as
| |
− | <center><math> (int_eq_1)
| |
− | \phi_j^\mathrm{S}(\mathbf{y}) = \int\limits_{\Gamma_j} G
| |
− | (\mathbf{y},\mathbf{\zeta}) \, \varsigma^j (\mathbf{\zeta})
| |
− | \mathrm{d}\sigma_\mathbf{\zeta}, \quad \mathbf{y} \in D,
| |
− | </math></center>
| |
− | where <math>D</math> is the volume occupied by the water and <math>\Gamma_j</math> is the
| |
− | immersed surface of body <math>\Delta_j</math>. The source strength distribution
| |
− | function <math>\varsigma^j</math> can be found by solving an
| |
− | integral equation. The integral equation is described in
| |
− | [[Weh_Lait]] and numerical methods for its solution are outlined in
| |
− | [[Sarp_Isa]].
| |
− | | |
− | | |
− | ===The diffraction transfer matrix of rotated bodies===
| |
− | | |
− | For a non-axisymmetric body, a rotation about the mean
| |
− | centre position in the <math>(x,y)</math>-plane will result in a
| |
− | different diffraction transfer matrix. We will show how the
| |
− | diffraction transfer matrix of a body rotated by an angle <math>\beta</math> can
| |
− | be easily calculated from the diffraction transfer matrix of the
| |
− | non-rotated body. The rotation of the body influences the form of the
| |
− | elements of the diffraction transfer matrices in two ways. Firstly, the
| |
− | angular dependence in the integral over the immersed surface of the
| |
− | body is altered and, secondly, the source strength distribution
| |
− | function is different if the body is rotated. However, the source
| |
− | strength distribution function of the rotated body can be obtained by
| |
− | calculating the response of the non-rotated body due to rotated
| |
− | incident potentials. It will be shown that the additional angular
| |
− | dependence can be easily factored out of the elements of the
| |
− | diffraction transfer matrix.
| |
− | | |
− | The additional angular dependence caused by the rotation of the
| |
− | incident potential can be factored out of the normal derivative of the
| |
− | incident potential such that
| |
| <center><math> | | <center><math> |
− | \frac{\partial \phi_{q\beta}^{\mathrm{I}}}{\partial n} =
| + | D_{n\nu}^l = |
− | \frac{\partial \phi_{q}^{\mathrm{I}}}{\partial n} | + | \tilde{D}_{n\nu}^{l} + |
− | \mathrm{e}^{\mathrm{i}q \beta}, | + | \sum_{j=1,j \neq l}^{N} \sum_{\tau = |
| + | -\infty}^{\infty} A_{n\tau}^j (-1)^\nu K_{\tau - \nu} (k_n |
| + | R_{jl}) \mathrm{e}^{\mathrm{i}(\tau - \nu) \varphi_{jl}} |
| </math></center> | | </math></center> |
− | where <math>\phi_{q\beta}^{\mathrm{I}}</math> is the rotated incident potential.
| |
− | Since the integral equation for the determination of the source
| |
− | strength distribution function is linear, the source strength
| |
− | distribution function due to the rotated incident potential is thus just
| |
− | given by
| |
− | <center><math>
| |
− | \varsigma_{q\beta}^j = \varsigma_q^j \, \mathrm{e}^{\mathrm{i}q \beta}.
| |
− | </math></center>
| |
− | <center><math>
| |
− | ({\mathbf B}_j)_{pq} = \frac{1}{\pi}
| |
− | \frac{(k_m^2+\alpha^2)\cos^2 k_md}{d(k_m^2+\alpha^2)-\alpha}
| |
− | \int\limits_{\Gamma_j} \cos k_m(c+d) I_p(\eta s) \mathrm{e}^{-\mathrm{i}p
| |
− | \varphi} \varsigma_q^j(\mathbf{\zeta}) \mathrm{d}\sigma_\mathbf{\zeta}
| |
− | </math></center>
| |
− | This is also the source strength distribution function of the rotated
| |
− | body due to the standard incident modes.
| |
| | | |
− | The elements of the diffraction transfer matrix <math>\mathbf{B}_j</math> are | + | = Final Equations = |
− | given by equations (B_elem). Keeping in mind that the body is
| + | |
− | rotated by the angle <math>\beta</math>, the elements of the diffraction transfer
| + | The scattered and incident potential of each body <math>\Delta_l</math> can be related by the |
− | matrix of the rotated body are given by
| + | [[Diffraction Transfer Matrix]] acting in the following way, |
| <center><math> | | <center><math> |
− | ({\mathbf B}_j^\beta)_{pq} = \frac{1}{\pi}
| + | A_{m \mu}^l = \sum_{n=0}^{\infty} \sum_{\nu = -\infty}^{\infty} B_{m n |
− | \frac{(k_m^2+\alpha^2)\cos^2 k_md}{d(k_m^2+\alpha^2)-\alpha}
| + | \mu \nu}^l D_{n\nu}^l. |
− | \int\limits_{\Gamma_j} \cos k_m(c+d) I_p(\eta s) \mathrm{e}^{-\mathrm{i}p | + | </math></center> |
− | (\varphi+\beta)} \varsigma_{q\beta}^j(\mathbf{\zeta}) \mathrm{d}\sigma_\mathbf{\zeta}
| |
− | </math></center>
| |
− | | |
− | Thus the additional angular dependence caused by the rotation of
| |
− | the body can be factored out of the elements of the diffraction
| |
− | transfer matrix. The elements of the diffraction transfer matrix
| |
− | corresponding to the body rotated by the angle <math>\beta</math>,
| |
− | <math>\mathbf{B}_j^\beta</math>, are given by
| |
− | <center><math> (B_rot)
| |
− | (\mathbf{B}_j^\beta)_{pq} = (\mathbf{B}_j)_{pq} \, \mathrm{e}^{\mathrm{i}(q-p) \beta}.
| |
− | </math></center> | |
− | | |
− | == Final Equations ==
| |
| | | |
− | If the diffraction transfer operator is known (its calculation
| + | The substitution of this into the equation for relating |
− | is discussed later), the substitution of (inc_coeff) into (diff_op) gives the
| + | the coefficients <math>D_{n\nu}^l</math> and |
| + | <math>A_{m \mu}^l</math>gives the |
| required equations to determine the coefficients of the scattered | | required equations to determine the coefficients of the scattered |
| wavefields of all bodies, | | wavefields of all bodies, |
− | <center><math> (eq_op) | + | <center><math> |
| A_{m\mu}^l = \sum_{n=0}^{\infty} | | A_{m\mu}^l = \sum_{n=0}^{\infty} |
− | \sum_{\nu = -\infty}^{\infty} B_{mn\mu\nu} | + | \sum_{\nu = -\infty}^{\infty} B_{mn\mu\nu}^l |
| \Big[ \tilde{D}_{n\nu}^{l} + | | \Big[ \tilde{D}_{n\nu}^{l} + |
− | \sum_{j=-\infty,j \neq l}^{\infty} \sum_{\tau = | + | \sum_{j=1,j \neq l}^{N} \sum_{\tau = |
| -\infty}^{\infty} A_{n\tau}^j (-1)^\nu K_{\tau - \nu} (k_n | | -\infty}^{\infty} A_{n\tau}^j (-1)^\nu K_{\tau - \nu} (k_n |
− | |j-l| R) \mathrm{e}^{\mathrm{i}(\tau -\nu) \varphi_{j-l}} \Big],
| + | R_{jl}) \mathrm{e}^{\mathrm{i}(\tau -\nu) \varphi_{jl}} \Big], |
− | </math></center>
| |
− | <math>m \in {N}</math>, <math>l,\mu \in {Z}</math>.
| |
− | | |
− | =The extension of Kagemoto and Yue's interaction theory to bodies of arbitrary shape in water of infinite depth=
| |
− | | |
− | [[kagemoto86]] developed an interaction theory for
| |
− | vertically non-overlapping axisymmetric structures in water of finite
| |
− | depth. While their theory was valid for bodies of
| |
− | arbitrary geometry, they did not develop all the necessary
| |
− | details to apply the theory to arbitrary bodies.
| |
− | The only requirements to apply this scattering theory is
| |
− | that the bodies are vertically non-overlapping and
| |
− | that the smallest cylinder which completely contains each body does not
| |
− | intersect with any other body.
| |
− | In this section we will extend their theory to bodies of
| |
− | arbitrary geometry in water of infinite depth. The extension of
| |
− | \citeauthor{kagemoto86}'s finite depth interaction theory to bodies of
| |
− | arbitrary geometry was accomplished by [[goo90]].
| |
− | | |
− | | |
− | The interaction theory begins by representing the scattered potential
| |
− | of each body in the cylindrical eigenfunction expansion. Furthermore,
| |
− | the incoming potential is also represented in the cylindrical
| |
− | eigenfunction expansion. The operator which maps the incoming and
| |
− | outgoing representation is called the diffraction transfer matrix and
| |
− | is different for each body.
| |
− | Since these representations are local to each body, a mapping of
| |
− | the eigenfunction representations between different bodies
| |
− | is required. This operator is called the coordinate transformation
| |
− | matrix.
| |
− | | |
− | The cylindrical eigenfunction expansions will be introduced before we
| |
− | derive a system of
| |
− | equations for the coefficients of the scattered wavefields. Analogously to
| |
− | [[kagemoto86]], we represent the scattered wavefield of
| |
− | each body as an incoming wave upon all other bodies. The addition of
| |
− | the ambient incident wave yields the complete incident potential and
| |
− | with the use of diffraction transfer matrices which relate the
| |
− | coefficients of the incident potential to those of the scattered
| |
− | wavefield a system of equations for the unknown coefficients of the
| |
− | scattered wavefields of all bodies is derived.
| |
− | | |
− | | |
− | ===Eigenfunction expansion of the potential===
| |
− | The equations of motion for the water are derived from the linearised
| |
− | inviscid theory. Under the assumption of irrotational motion the
| |
− | velocity vector field of the water can be written as the gradient
| |
− | field of a scalar velocity potential <math>\Phi</math>. Assuming that the motion
| |
− | is time-harmonic with the radian frequency <math>\omega</math> the
| |
− | velocity potential can be expressed as the real part of a complex
| |
− | quantity,
| |
− | <center><math> (time)
| |
− | \Phi(\mathbf{y},t) = \Re \{\phi (\mathbf{y}) \mathrm{e}^{-\mathrm{i}\omega t} \}.
| |
− | </math></center>
| |
− | To simplify notation, <math>\mathbf{y} = (x,y,z)</math> will always denote a point
| |
− | in the water, which is assumed infinitely deep, while <math>\mathbf{x}</math> will
| |
− | always denote a point of the undisturbed water surface assumed at <math>z=0</math>.
| |
− | | |
− | The problem consists of <math>N</math> vertically non-overlapping bodies, denoted
| |
− | by <math>\Delta_j</math>, which are sufficiently far apart that there is no
| |
− | intersection of the smallest cylinder which contains each body with
| |
− | any other body. Each body is subject to an incident wavefield which is
| |
− | incoming, responds to this wavefield and produces a scattered wave field which
| |
− | is outgoing. Both the incident and scattered potential corresponding
| |
− | to these wavefields can be represented in the cylindrical
| |
− | eigenfunction expansion valid outside of the escribed cylinder of the
| |
− | body. Let <math>(r_j,\theta_j,z)</math> be the local cylindrical coordinates of
| |
− | the <math>j</math>th body, <math>\Delta_j</math>, <math>j \in \{1, \ldots , N\}</math>, and
| |
− | <math>\alpha =\omega^2/g</math> where <math>g</math> is the acceleration due to gravity. Figure
| |
− | (fig:floe_tri) shows these coordinate systems for two bodies.
| |
− | | |
− | The scattered potential of body <math>\Delta_j</math> can be expanded in
| |
− | cylindrical eigenfunctions,
| |
− | <center><math> (basisrep_out)
| |
− | \phi_j^\mathrm{S} (r_j,\theta_j,z) = \mathrm{e}^{\alpha z} \sum_{\nu = -
| |
− | \infty}^{\infty} A_{0 \nu}^j H_\nu^{(1)} (\alpha r_j) \mathrm{e}^{\mathrm{i}\nu
| |
− | \theta_j}
| |
− | + \int\limits_0^{\infty} \big( \cos \eta z + \frac{\alpha}{\eta}
| |
− | \sin \eta z \big) \sum_{\nu = -
| |
− | \infty}^{\infty} A_{\nu}^j (\eta) K_\nu (\eta r_j) \mathrm{e}^{\mathrm{i}\nu
| |
− | \theta_j} \mathrm{d}\eta,
| |
− | </math></center>
| |
− | where the coefficients <math>A_{0 \nu}^j</math> for the propagating modes are
| |
− | discrete and the coefficients <math>A_{\nu}^j (\cdot)</math> for the decaying
| |
− | modes are functions. <math>H_\nu^{(1)}</math> and <math>K_\nu</math> are the Hankel function
| |
− | of the first kind and the modified Bessel function of the second kind
| |
− | respectively, both of order <math>\nu</math> as defined in [[Abramowitz and Stegun 1964]].
| |
− | The incident potential upon body <math>\Delta_j</math> can be expanded in
| |
− | cylindrical eigenfunctions,
| |
− | <center><math> (basisrep_in)
| |
− | \phi_j^\mathrm{I} (r_j,\theta_j,z) = \mathrm{e}^{\alpha z} \sum_{\mu = -
| |
− | \infty}^{\infty} D_{0 \mu}^j J_\mu (\alpha r_j) \mathrm{e}^{\mathrm{i}\mu
| |
− | \theta_j}
| |
− | + \int\limits_0^{\infty} \big( \cos \eta z + \frac{\alpha}{\eta}
| |
− | \sin \eta z \big) \sum_{\mu = -
| |
− | \infty}^{\infty} D_{\mu}^j (\eta) I_\mu (\eta r_j) \mathrm{e}^{\mathrm{i}\mu
| |
− | \theta_j} \mathrm{d}\eta,
| |
− | </math></center>
| |
− | where the coefficients <math>D_{0 \mu}^j</math> for the propagating modes are
| |
− | discrete and the coefficients <math>D_{\mu}^j (\cdot)</math> for the decaying
| |
− | modes are functions. <math>J_\mu</math> and <math>I_\mu</math> are the Bessel function and
| |
− | the modified Bessel function respectively, both of the first kind and
| |
− | order <math>\mu</math>. To simplify the notation, from now on <math>\psi(z,\eta)</math> will
| |
− | denote the vertical eigenfunctions corresponding to the decaying modes,
| |
− | <center><math>
| |
− | \psi(z,\eta) = \cos \eta z + \alpha / \eta \, \sin \eta z.
| |
− | </math></center>
| |
− | | |
− | ===The interaction in water of infinite depth===
| |
− | Following the ideas of [[kagemoto86]], a system of equations for the unknown
| |
− | coefficients and coefficient functions of the scattered wavefields
| |
− | will be developed. This system of equations is based on transforming the
| |
− | scattered potential of <math>\Delta_j</math> into an incident potential upon
| |
− | <math>\Delta_l</math> (<math>j \neq l</math>). Doing this for all bodies simultaneously,
| |
− | and relating the incident and scattered potential for each body, a system
| |
− | of equations for the unknown coefficients will be developed.
| |
− | | |
− | The scattered potential <math>\phi_j^{\mathrm{S}}</math> of body <math>\Delta_j</math> needs to be
| |
− | represented in terms of the incident potential <math>\phi_l^{\mathrm{I}}</math>
| |
− | upon <math>\Delta_l</math>, <math>j \neq l</math>. From figure
| |
− | (fig:floe_tri) we can see that this can be accomplished by using
| |
− | Graf's addition theorem for Bessel functions given in
| |
− | [[Abramowitz and Stegun 1964]],
| |
− | <center><math> (transf)
| |
− | \begin{matrix} (transf_h)
| |
− | H_\nu^{(1)}(\alpha r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} &=
| |
− | \sum_{\mu = - \infty}^{\infty} H^{(1)}_{\nu + \mu} (\alpha R_{jl}) \,
| |
− | J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu (\pi - \theta_l + \vartheta_{jl})},
| |
− | \quad j \neq l,\\
| |
− | (transf_k)
| |
− | K_\nu(\eta r_j) \mathrm{e}^{\mathrm{i}\nu (\theta_j - \vartheta_{jl})} &= \sum_{\mu = -
| |
− | \infty}^{\infty} K_{\nu + \mu} (\eta R_{jl}) \, I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu
| |
− | (\pi - \theta_l + \vartheta_{jl})}, \quad j \neq l,
| |
− | \end{matrix}
| |
− | </math></center>
| |
− | which is valid provided that <math>r_l < R_{jl}</math>. This limitation
| |
− | only requires that the escribed cylinder of each body <math>\Delta_l</math> does
| |
− | not enclose any other origin <math>O_j</math> (<math>j \neq l</math>). However, the
| |
− | expansion of the scattered and incident potential in cylindrical
| |
− | eigenfunctions is only valid outside the escribed cylinder of each
| |
− | body. Therefore the condition that the
| |
− | escribed cylinder of each body <math>\Delta_l</math> does not enclose any other
| |
− | origin <math>O_j</math> (<math>j \neq l</math>) is superseded by the more rigorous
| |
− | restriction that the escribed cylinder of each body may not contain any
| |
− | other body. Making use of the equations (transf)
| |
− | the scattered potential of <math>\Delta_j</math> can be expressed in terms of the
| |
− | incident potential upon <math>\Delta_l</math>,
| |
− | <center><math>\begin{matrix}
| |
− | \phi_j^{\mathrm{S}} (r_l,\theta_l,z) &=
| |
− | \mathrm{e}^{\alpha z} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
| |
− | \sum_{\mu = -\infty}^{\infty} H_{\nu - \mu}^{(1)} (\alpha R_{jl})
| |
− | J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{e}^{\mathrm{i}(\nu-\mu)
| |
− | \vartheta_{jl}}\\
| |
− | & \quad + \int\limits_0^{\infty} \psi (z,\eta) \sum_{\nu = -
| |
− | \infty}^{\infty} A_{\nu}^j (\eta) \sum_{\mu = -\infty}^{\infty}
| |
− | (-1)^\mu K_{\nu-\mu} (\eta R_{jl}) I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu
| |
− | \theta_l} \mathrm{e}^{\mathrm{i}(\nu-\mu) \vartheta_{jl}} \mathrm{d}\eta\\
| |
− | &= \mathrm{e}^{\alpha z} \sum_{\mu = -\infty}^{\infty} \Big[ \sum_{\nu = -
| |
− | \infty}^{\infty} A_{0\nu}^j H_{\nu - \mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathrm{i}
| |
− | (\nu-\mu) \vartheta_{jl}} \Big] J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l}\\
| |
− | & + \int\limits_0^{\infty} \psi (z,\eta) \sum_{\mu = -\infty}^{\infty}
| |
− | \Big[ \sum_{\nu = - \infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu-\mu}
| |
− | (\eta R_{jl}) \mathrm{e}^{\mathrm{i}(\nu-\mu)
| |
− | \vartheta_{jl}} \Big] I_\mu (\eta r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{d}\eta.
| |
− | \end{matrix}</math></center>
| |
− | The ambient incident wavefield <math>\phi^{\mathrm{In}}</math> can also be
| |
− | expanded in the eigenfunctions corresponding to the incident wavefield upon
| |
− | <math>\Delta_l</math>. A detailed illustration of how to accomplish this will be given
| |
− | later. Let <math>D_{l0\mu}^{\mathrm{In}}</math> denote the coefficients of this
| |
− | ambient incident wavefield corresponding to the propagating modes and
| |
− | <math>D_{l\mu}^{\mathrm{In}} (\cdot)</math> denote the coefficients functions
| |
− | corresponding to the decaying modes (which are identically zero) of
| |
− | the incoming eigenfunction expansion for <math>\Delta_l</math>. The total
| |
− | incident wavefield upon body <math>\Delta_j</math> can now be expressed as
| |
− | <center><math>\begin{matrix}
| |
− | &\phi_l^{\mathrm{I}}(r_l,\theta_l,z) = \phi^{\mathrm{In}}(r_l,\theta_l,z) +
| |
− | \sum{}_{j=1,j \neq l}^{N} \, \phi_j^{\mathrm{S}}
| |
− | (r_l,\theta_l,z)\\
| |
− | &= \mathrm{e}^{\alpha z} \sum_{\mu = -\infty}^{\infty} \Big[
| |
− | D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j
| |
− | \neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
| |
− | H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathrm{i}
| |
− | (\nu - \mu) \vartheta_{jl}} \Big] J_\mu (\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l}\\
| |
− | & + \int\limits_0^{\infty} \psi (z,\eta) \sum_{\mu =
| |
− | -\infty}^{\infty} \Big[ D_{l\mu}^{\mathrm{In}}(\eta) +
| |
− | \sum_{j=1,j \neq l}^{N} \sum_{\nu =
| |
− | -\infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu - \mu} (\eta
| |
− | R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}} \Big] I_\mu (\eta r_l)
| |
− | \mathrm{e}^{\mathrm{i}\mu \theta_l} \mathrm{d}\eta.
| |
− | \end{matrix}</math></center>
| |
− | The coefficients of the total incident potential upon <math>\Delta_l</math> are
| |
− | therefore given by
| |
− | <center><math> (inc_coeff)
| |
− | D_{0\mu}^l = D_{l0\mu}^{\mathrm{In}}
| |
− | + \sum_{j=1,j \neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
| |
− | H_{\nu-\mu}^{(1)}
| |
− | (\alpha R_{jl}) \mathrm{e}^{\mathbf{i}
| |
− | (\nu - \mu) \vartheta_{jl}}
| |
− | </math></center>
| |
− | <center><math>
| |
− | D_{\mu}^l(\eta) = D_{l\mu}^{\mathrm{In}}(\eta) +
| |
− | \sum_{j=1,j \neq l}^{N} \sum_{\nu =
| |
− | -\infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu - \mu} (\eta
| |
− | R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}}.
| |
− | </math></center>
| |
− | | |
− | In general, it is possible to relate the total incident and scattered
| |
− | partial waves for any body through the diffraction characteristics of
| |
− | that body in isolation. There exist diffraction transfer operators
| |
− | <math>B_l</math> that relate the coefficients of the incident and scattered
| |
− | partial waves, such that
| |
− | <center><math> (eq_B)
| |
− | A_l = B_l (D_l), \quad l=1, \ldots, N,
| |
− | </math></center>
| |
− | where <math>A_l</math> are the scattered modes due to the incident modes <math>D_l</math>.
| |
− | In the case of a countable number of modes, (i.e. when
| |
− | the depth is finite), <math>B_l</math> is an infinite dimensional matrix. When
| |
− | the modes are functions of a continuous variable (i.e. infinite
| |
− | depth), <math>B_l</math> is the kernel of an integral operator.
| |
− | For the propagating and the decaying modes respectively, the scattered
| |
− | potential can be related by diffraction transfer operators acting in the
| |
− | following ways,
| |
− | <center><math> (diff_op)
| |
− | \begin{matrix}
| |
− | A_{0\nu}^l &= \sum_{\mu = -\infty}^{\infty} B_{l\nu\mu}^\mathrm{pp} D_{0\mu}^l
| |
− | + \int\limits_{0}^{\infty} \sum_{\mu = -\infty}^{\infty}
| |
− | B_{l\nu\mu}^\mathrm{pd} (\xi) D_{\mu}^l (\xi) \mathrm{d}\xi,\\
| |
− | A_\nu^l (\eta) &= \sum_{\mu = -\infty}^{\infty}
| |
− | B_{l\nu\mu}^\mathrm{dp} (\eta) D_{0\mu}^l + \int\limits_{0}^{\infty}
| |
− | \sum_{\mu = -\infty}^{\infty} B_{l\nu\mu}^\mathrm{dd} (\eta;\xi)
| |
− | D_{\mu}^l (\xi) \mathrm{d}\xi.
| |
− | \end{matrix}
| |
− | </math></center>
| |
− | The superscripts <math>\mathrm{p}</math> and <math>\mathrm{d}</math> are used to distinguish
| |
− | between propagating and decaying modes, the first superscript denotes the kind
| |
− | of scattered mode, the second one the kind of incident mode.
| |
− | If the diffraction transfer operators are known (their calculation
| |
− | will be discussed later), the substitution of
| |
− | equations (inc_coeff) into equations (diff_op) give the
| |
− | required equations to determine the coefficients and coefficient
| |
− | functions of the scattered wavefields of all bodies,
| |
− | <center><math> (eq_op)
| |
− | \begin{matrix}
| |
− | A_{0n}^l =& \sum_{\mu = -\infty}^{\infty} B_{ln\mu}^\mathrm{pp}
| |
− | \Big[ D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j
| |
− | \neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
| |
− | H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathbf{i}
| |
− | (\nu - \mu) \vartheta_{jl}} \Big]\\
| |
− | &+ \int\limits_{0}^{\infty} \sum_{\mu = -\infty}^{\infty}
| |
− | B_{ln\mu}^\mathrm{pd} (\xi) \Big[D_{l\mu}^{\mathrm{In}}(\eta) +
| |
− | \sum_{j=1,j \neq l}^{N} \sum_{\nu =
| |
− | -\infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu - \mu} (\eta
| |
− | R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}} \Big] \mathrm{d}\xi,\\
| |
− | A_n^l (\eta) &= \sum_{\mu = -\infty}^{\infty}
| |
− | B_{ln\mu}^\mathrm{dp} (\eta) \Big[
| |
− | D_{l0\mu}^{\mathrm{In}} + \sum_{j=1,j
| |
− | \neq l}^{N} \sum_{\nu = - \infty}^{\infty} A_{0\nu}^j
| |
− | H_{\nu-\mu}^{(1)} (\alpha R_{jl}) \mathrm{e}^{\mathbf{i}
| |
− | (\nu - \mu) \vartheta_{jl}}\Big]\\
| |
− | & + \int\limits_{0}^{\infty}
| |
− | \sum_{\mu = -\infty}^{\infty} B_{ln\mu}^\mathrm{dd} (\eta;\xi)
| |
− | \Big[ D_{l\mu}^{\mathrm{In}}(\eta) +
| |
− | \sum_{j=1,j \neq l}^{N} \sum_{\nu =
| |
− | -\infty}^{\infty} A_{\nu}^j (\eta) (-1)^\mu K_{\nu - \mu} (\eta
| |
− | R_{jl}) \mathrm{e}^{\mathrm{i}(\nu - \mu) \vartheta_{jl}}\Big] \mathrm{d}\xi,
| |
− | \end{matrix}
| |
− | </math></center>
| |
− | <math>n \in \mathit{Z},\, l = 1, \ldots, N</math>. It has to be noted that all
| |
− | equations are coupled so that it is necessary to solve for all
| |
− | scattered coefficients and coefficient functions simultaneously.
| |
− | | |
− | For numerical calculations, the infinite sums have to be truncated and
| |
− | the integrals must be discretised. Implying a suitable truncation, the
| |
− | four different diffraction transfer operators can be represented by
| |
− | matrices which can be assembled in a big matrix <math>\mathbf{B}_l</math>,
| |
− | <center><math>
| |
− | \mathbf{B}_l = \left[
| |
− | \begin{matrix}{cc} \mathbf{B}_l^{\mathrm{pp}} & \mathbf{B}_l^{\mathrm{pd}}\\
| |
− | \mathbf{B}_l^{\mathrm{dp}} & \mathbf{B}_l^{\mathrm{dd}}
| |
− | \end{matrix} \right],
| |
− | </math></center>
| |
− | the infinite depth diffraction transfer matrix.
| |
− | Truncating the coefficients accordingly, defining <math>{\mathbf a}^l</math> to be the
| |
− | vector of the coefficients of the scattered potential of body
| |
− | <math>\Delta_l</math>, <math>\mathbf{d}_l^{\mathrm{In}}</math> to be the vector of
| |
− | coefficients of the ambient wavefield, and making use of a coordinate
| |
− | transformation matrix <math>{\mathbf T}_{jl}</math> given by
| |
− | <center><math> (T_elem_deep)
| |
− | ({\mathbf T}_{jl})_{pq} = H_{p-q}^{(1)}(\alpha R_{jl}) \, \mathrm{e}^{\mathrm{i}(p-q)
| |
− | \vartheta_{jl}}
| |
− | </math></center>
| |
− | for the propagating modes, and
| |
− | <center><math>
| |
− | ({\mathbf T}_{jl})_{pq} = (-1)^{q} \, K_{p-q} (\eta R_{jl}) \, \mathrm{e}^{\mathbf{i}
| |
− | (p-q) \vartheta_{jl}}
| |
− | </math></center>
| |
− | for the decaying modes, a linear system of equations
| |
− | for the unknown coefficients follows from equations (eq_op),
| |
− | <center><math> (eq_Binf)
| |
− | {\mathbf a}_l =
| |
− | {\mathbf {B}}_l \Big(
| |
− | {\mathbf d}_l^{\mathrm{In}} +
| |
− | \sum_{j=1,j \neq l}^{N} trans {\mathbf T}_{jl} \,
| |
− | {\mathbf a}_j \Big), \quad l=1, \ldots, N,
| |
− | </math></center>
| |
− | where the left superscript <math>\mathrm{t}</math> indicates transposition.
| |
− | The matrix <math>{\mathbf \hat{B}}_l</math> denotes the infinite depth diffraction
| |
− | transfer matrix <math>{\mathbf B}_l</math> in which the elements associated with
| |
− | decaying scattered modes have been multiplied with the appropriate
| |
− | integration weights depending on the discretisation of the continuous variable.
| |
− | | |
− | ==Calculation of the diffraction transfer matrix for bodies of arbitrary geometry==
| |
− | | |
− | Before we can apply the interaction theory we require the diffraction
| |
− | transfer matrices <math>\mathbf{B}_j</math> which relate the incident and the
| |
− | scattered potential for a body <math>\Delta_j</math> in isolation.
| |
− | The elements of the diffraction transfer matrix, <math>({\mathbf B}_j)_{pq}</math>,
| |
− | are the coefficients of the
| |
− | <math>p</math>th partial wave of the scattered potential due to a single
| |
− | unit-amplitude incident wave of mode <math>q</math> upon <math>\Delta_j</math>.
| |
− | | |
− | While \citeauthor{kagemoto86}'s interaction theory was valid for
| |
− | bodies of arbitrary shape, they did not explain how to actually obtain the
| |
− | diffraction transfer matrices for bodies which did not have an axisymmetric
| |
− | geometry. This step was performed by [[goo90]] who came up with an
| |
− | explicit method to calculate the diffraction transfer matrices for bodies of
| |
− | arbitrary geometry in the case of finite depth. Utilising a Green's
| |
− | function they used the standard
| |
− | method of transforming the single diffraction boundary-value problem
| |
− | to an integral equation for the source strength distribution function
| |
− | over the immersed surface of the body.
| |
− | However, the representation of the scattered potential which
| |
− | is obtained using this method is not automatically given in the
| |
− | cylindrical eigenfunction
| |
− | expansion. To obtain such cylindrical eigenfunction expansions of the
| |
− | potential [[goo90]] used the representation of the free surface
| |
− | finite depth Green's function given by [[black75]] and
| |
− | [[fenton78]]. \citeauthor{black75} and
| |
− | \citeauthor{fenton78}'s representation of the Green's function was based
| |
− | on applying Graf's addition theorem to the eigenfunction
| |
− | representation of the free surface finite depth Green's function given
| |
− | by [[john2]]. Their representation allowed the scattered potential to be
| |
− | represented in the eigenfunction expansion with the cylindrical
| |
− | coordinate system fixed at the point of the water surface above the
| |
− | mean centre position of the body.
| |
− | | |
− | It should be noted that, instead of using the source strength distribution
| |
− | function, it is also possible to consider an integral equation for the
| |
− | total potential and calculate the elements of the diffraction transfer
| |
− | matrix from the solution of this integral equation.
| |
− | An outline of this method for water of finite
| |
− | depth is given by [[kashiwagi00]]. We will present
| |
− | here a derivation of the diffraction transfer matrices for the case
| |
− | infinite depth based on a solution
| |
− | for the source strength distribution function. However,
| |
− | an equivalent derivation would be possible based on the solution
| |
− | for the total velocity potential.
| |
− | | |
− | To calculate the diffraction transfer matrix in infinite depth, we
| |
− | require the representation of the [[Infinite Depth]], [[Free-Surface Green Function]]
| |
− | in cylindrical eigenfunctions,
| |
− | <center><math> (green_inf)\begin{matrix}
| |
− | G(r,\theta,z;s,\varphi,c) =& \frac{\mathrm{i}\alpha}{2} \, \mathrm{e}^{\alpha (z+c)}
| |
− | \sum_{\nu=-\infty}^{\infty} H_\nu^{(1)}(\alpha r) J_\nu(\alpha s) \mathrm{e}^{\mathrm{i}\nu
| |
− | (\theta - \varphi)} \\
| |
− | +& \frac{1}{\pi^2} \int\limits_0^{\infty}
| |
− | \psi(z,\eta) \frac{\eta^2}{\eta^2+\alpha^2} \psi(c,\eta)
| |
− | \sum_{\nu=-\infty}^{\infty} K_\nu(\eta r) I_\nu(\eta s) \mathrm{e}^{\mathrm{i}\nu
| |
− | (\theta - \varphi)} \mathrm{d}\eta,
| |
− | \end{matrix}
| |
− | </math></center>
| |
− | <math>r > s</math>, given by [[Peter and Meylan 2004]].
| |
− | | |
− | We assume that we have represented the scattered potential in terms of
| |
− | the source strength distribution <math>\varsigma^j</math> so that the scattered
| |
− | potential can be written as
| |
− | <center><math> (int_eq_1)
| |
− | \phi_j^\mathrm{S}(\mathbf{y}) = \int\limits_{\Gamma_j} G
| |
− | (\mathbf{y},\mathbf{\zeta}) \, \varsigma^j (\mathbf{\zeta})
| |
− | \mathrm{d}\sigma_\mathbf{\zeta}, \quad \mathbf{y} \in D,
| |
− | </math></center>
| |
− | where <math>D</math> is the volume occupied by the water and <math>\Gamma_j</math> is the
| |
− | immersed surface of body <math>\Delta_j</math>. The source strength distribution
| |
− | function <math>\varsigma^j</math> can be found by solving an
| |
− | integral equation. The integral equation is described in
| |
− | [[Weh_Lait]] and numerical methods for its solution are outlined in
| |
− | [[Sarp_Isa]].
| |
− | Substituting the eigenfunction expansion of the Green's function
| |
− | (green_inf) into (int_eq_1), the scattered potential can
| |
− | be written as
| |
− | <center><math>\begin{matrix}
| |
− | &\phi_j^\mathrm{S}(r_j,\theta_j,z) = \mathrm{e}^{\alpha z} \sum_{\nu = -
| |
− | \infty}^{\infty} \bigg[ \frac{\mathrm{i}\alpha}{2}
| |
− | \int\limits_{\Gamma_j} \mathrm{e}^{\alpha c} J_\nu(\alpha s) \mathrm{e}^{-\mathrm{i}\nu
| |
− | \varphi} \varsigma^j(\mathbf{\zeta})
| |
− | \mathrm{d}\sigma_\mathbf{\zeta} \bigg] H_\nu^{(1)} (\alpha r_j) \mathrm{e}^{\mathrm{i}\nu \theta_j}\\
| |
− | & \, + \int\limits_{0}^{\infty} \psi(z,\eta) \sum_{\nu = -
| |
− | \infty}^{\infty} \bigg[ \frac{1}{\pi^2} \frac{\eta^2
| |
− | }{\eta^2 + \alpha^2} \int\limits_{\Gamma_j} \psi(c,\eta) I_\nu(\eta s)
| |
− | \mathrm{e}^{-\mathrm{i}\nu \varphi} \varsigma^j({\mathbf{\zeta}})
| |
− | \mathrm{d}\sigma_{\mathbf{\zeta}} \bigg] K_\nu (\eta r_j) \mathrm{e}^{\mathrm{i}\nu \theta_j} \mathrm{d}\eta,
| |
− | \end{matrix}</math></center>
| |
− | where
| |
− | <math>\mathbf{\zeta}=(s,\varphi,c)</math> and <math>r>s</math>.
| |
− | This restriction implies that the eigenfunction expansion is only valid
| |
− | outside the escribed cylinder of the body.
| |
− | | |
− | The columns of the diffraction transfer matrix are the coefficients of
| |
− | the eigenfunction expansion of the scattered wavefield due to the
| |
− | different incident modes of unit-amplitude. The elements of the
| |
− | diffraction transfer matrix of a body of arbitrary shape are therefore given by
| |
− | <center><math> (B_elem)
| |
− | ({\mathbf B}_j)_{pq} = \frac{\mathrm{i}\alpha}{2} \int\limits_{\Gamma_j}
| |
− | \mathrm{e}^{\alpha c} J_p(\alpha s) \mathrm{e}^{-\mathrm{i}p \varphi} \varsigma_q^j(\mathbf{\zeta})
| |
− | \mathrm{d}\sigma_\mathbf{\zeta}
| |
− | </math></center>
| |
− | and
| |
− | <center><math>
| |
− | ({\mathbf B}_j)_{pq} = \frac{1}{\pi^2} \frac{\eta^2}{\eta^2 +
| |
− | \alpha^2} \int\limits_{\Gamma_j} \psi(c,\eta) I_p(\eta s) \mathrm{e}^{-\mathrm{i}p
| |
− | \varphi} \varsigma_q^j(\mathbf{\zeta}) \mathrm{d}\sigma_\mathbf{\zeta}
| |
− | </math></center>
| |
− | for the propagating and the decaying modes respectively, where
| |
− | <math>\varsigma_q^j(\mathbf{\zeta})</math> is the source strength distribution
| |
− | due to an incident potential of mode <math>q</math> of the form
| |
− | <center><math> (test_modesinf)
| |
− | \phi_q^{\mathrm{I}}(s,\varphi,c) = \mathrm{e}^{\alpha c} H_q^{(1)} (\alpha
| |
− | s) \mathrm{e}^{\mathrm{i}q \varphi}
| |
− | </math></center>
| |
− | for the propagating modes, and
| |
− | <center><math>
| |
− | \phi_q^{\mathrm{I}}(s,\varphi,c) = \psi(c,\eta) K_q (\eta s) \mathrm{e}^{\mathrm{i}q \varphi}
| |
− | </math></center>
| |
− | for the decaying modes.
| |
− | | |
− | ===The diffraction transfer matrix of rotated bodies===
| |
− | | |
− | For a non-axisymmetric body, a rotation about the mean
| |
− | centre position in the <math>(x,y)</math>-plane will result in a
| |
− | different diffraction transfer matrix. We will show how the
| |
− | diffraction transfer matrix of a body rotated by an angle <math>\beta</math> can
| |
− | be easily calculated from the diffraction transfer matrix of the
| |
− | non-rotated body. The rotation of the body influences the form of the
| |
− | elements of the diffraction transfer matrices in two ways. Firstly, the
| |
− | angular dependence in the integral over the immersed surface of the
| |
− | body is altered and, secondly, the source strength distribution
| |
− | function is different if the body is rotated. However, the source
| |
− | strength distribution function of the rotated body can be obtained by
| |
− | calculating the response of the non-rotated body due to rotated
| |
− | incident potentials. It will be shown that the additional angular
| |
− | dependence can be easily factored out of the elements of the
| |
− | diffraction transfer matrix.
| |
− | | |
− | The additional angular dependence caused by the rotation of the
| |
− | incident potential can be factored out of the normal derivative of the
| |
− | incident potential such that
| |
− | <center><math>
| |
− | \frac{\partial \phi_{q\beta}^{\mathrm{I}}}{\partial n} =
| |
− | \frac{\partial \phi_{q}^{\mathrm{I}}}{\partial n}
| |
− | \mathrm{e}^{\mathrm{i}q \beta},
| |
− | </math></center>
| |
− | where <math>\phi_{q\beta}^{\mathrm{I}}</math> is the rotated incident potential.
| |
− | Since the integral equation for the determination of the source
| |
− | strength distribution function is linear, the source strength
| |
− | distribution function due to the rotated incident potential is thus just
| |
− | given by
| |
− | <center><math>
| |
− | \varsigma_{q\beta}^j = \varsigma_q^j \, \mathrm{e}^{\mathrm{i}q \beta}.
| |
− | </math></center>
| |
− | This is also the source strength distribution function of the rotated
| |
− | body due to the standard incident modes.
| |
− | | |
− | The elements of the diffraction transfer matrix <math>\mathbf{B}_j</math> are
| |
− | given by equations (B_elem). Keeping in mind that the body is
| |
− | rotated by the angle <math>\beta</math>, the elements of the diffraction transfer
| |
− | matrix of the rotated body are given by
| |
− | <center><math> (B_elemrot)
| |
− | (\mathbf{B}_j^\beta)_{pq} = \frac{\mathrm{i}\alpha}{2} \int\limits_{\Gamma_j}
| |
− | \mathrm{e}^{\alpha c} J_p(\alpha s) \mathrm{e}^{-\mathrm{i}p (\varphi+\beta)}
| |
− | \varsigma_{q\beta}^j(\mathbf{\zeta}) \mathrm{d}\sigma_\mathbf{\zeta},
| |
− | </math></center>
| |
− | and
| |
− | <center><math>
| |
− | (\mathbf{B}_j^\beta)_{pq} = \frac{1}{\pi^2} \frac{\eta^2}{\eta^2 +
| |
− | \alpha^2} \int\limits_{\Gamma_j} \psi(c,\eta) I_p(\eta s) \mathrm{e}^{-\mathrm{i}p
| |
− | (\varphi+\beta)} \varsigma_{q\beta}^j(\mathbf{\zeta}) \mathrm{d}\sigma_\mathbf{\zeta},
| |
− | </math></center>
| |
− | for the propagating and decaying modes respectively.
| |
− | | |
− | Thus the additional angular dependence caused by the rotation of
| |
− | the body can be factored out of the elements of the diffraction
| |
− | transfer matrix. The elements of the diffraction transfer matrix
| |
− | corresponding to the body rotated by the angle <math>\beta</math>,
| |
− | <math>\mathbf{B}_j^\beta</math>, are given by
| |
− | <center><math> (B_rot)
| |
− | (\mathbf{B}_j^\beta)_{pq} = (\mathbf{B}_j)_{pq} \, \mathrm{e}^{\mathrm{i}(q-p) \beta}.
| |
− | </math></center>
| |
− | As before, <math>(\mathbf{B})_{pq}</math> is understood to be the element of
| |
− | <math>\mathbf{B}</math> which corresponds to the coefficient of the <math>p</math>th scattered
| |
− | mode due to a unit-amplitude incident wave of mode <math>q</math>. Equation (B_rot) applies to
| |
− | propagating and decaying modes likewise.
| |
− | | |
− | ==Representation of the ambient wavefield in the eigenfunction representation==
| |
− | In Cartesian coordinates centred at the origin, the ambient wavefield is
| |
− | given by
| |
− | <center><math>
| |
− | \phi^{\mathrm{In}}(x,y,z) = A \frac{g}{\omega} \, \mathrm{e}^{\mathrm{i}\alpha (x
| |
− | \cos \chi + y \sin \chi)+ \alpha z},
| |
− | </math></center>
| |
− | where <math>A</math> is the amplitude (in displacement) and <math>\chi</math> is the
| |
− | angle between the <math>x</math>-axis and the direction in which the wavefield travels.
| |
− | The interaction theory requires that the ambient wavefield, which is
| |
− | incident upon
| |
− | all bodies, is represented in the eigenfunction expansion of an
| |
− | incoming wave in the local coordinates of the body. The ambient wave
| |
− | can be represented in an eigenfunction expansion centred at the origin
| |
− | as
| |
− | <center><math>
| |
− | \phi^{\mathrm{In}}(x,y,z) = A \frac{g}{\omega} \mathrm{e}^{\alpha z}
| |
− | \sum_{\mu = -\infty}^{\infty} \mathrm{e}^{\mathrm{i}\mu (\pi/2 - \theta + \chi)}
| |
− | J_\mu(\alpha r)
| |
− | </math></center>
| |
− | \cite[p. 169]{linton01}.
| |
− | Since the local coordinates of the bodies are centred at their mean
| |
− | centre positions <math>O_l = (O_x^l,O_y^l)</math>, a phase factor has to be defined
| |
− | which accounts for the position from the origin. Including this phase
| |
− | factor the ambient wavefield at the <math>l</math>th body is given
| |
− | by
| |
− | <center><math>
| |
− | \phi^{\mathrm{In}}(r_l,\theta_l,z) = A \frac{g}{\omega} \, e^{\mathrm{i}\alpha (O_x^l
| |
− | \cos \chi + O_x^l \sin \chi)} \, \mathrm{e}^{\alpha z}
| |
− | \sum_{\mu = -\infty}^{\infty} \mathrm{e}^{\mathrm{i}\mu (\pi/2 - \chi)}
| |
− | J_\mu(\alpha r_l) \mathrm{e}^{\mathrm{i}\mu \theta_l}.
| |
− | </math></center>
| |
− | | |
− | ==Solving the resulting system of equations==
| |
− | After the coefficient vector of the ambient incident wavefield, the
| |
− | diffraction transfer matrices and the coordinate
| |
− | transformation matrices have been calculated, the system of
| |
− | equations (eq_B_inf),
| |
− | has to be solved. This system can be represented by the following
| |
− | matrix equation,
| |
− | <center><math>
| |
− | \left[ \begin{matrix}
| |
− | {\mathbf a}_1\\ {\mathbf a}_2\\ \\ \vdots \\ \\ {\mathbf a}_N
| |
− | \end{matrix} \right]
| |
− | = \left[ \begin{matrix}
| |
− | {{\mathbf B}}_1 {\mathbf d}_1^\mathrm{In}\\ {{\mathbf B}}_2 {\mathbf
| |
− | d}_2^\mathrm{In}\\ \\ \vdots \\ \\ {{\mathbf B}}_N {\mathbf d}_N^\mathrm{In}
| |
− | \end{matrix} \right]
| |
− | +
| |
− | \left[ \begin{matrix}
| |
− | \mathbf{0} & {{\mathbf B}}_1 {\mathbf T}_{21} & {{\mathbf B}}_1
| |
− | {\mathbf T}_{31} & \dots & {{\mathbf B}}_1 {\mathbf T}_{N1}\\
| |
− | {{\mathbf B}}_2 {\mathbf T}_{12} & \mathbf{0} & {{\mathbf B}}_2
| |
− | {\mathbf T}_{32} & \dots & {{\mathbf B}}_2 {\mathbf T}_{N2}\\
| |
− | & & \mathbf{0} & &\\
| |
− | \vdots & & & \ddots & \vdots\\
| |
− | & & & & \\
| |
− | {{\mathbf B}}_N {\mathbf T}_{1N} & & \dots &
| |
− | & \mathbf{0}
| |
− | \end{matrix} \right]
| |
− | \left[ \begin{matrix}
| |
− | {\mathbf a}_1\\ {\mathbf a}_2\\ \\ \vdots \\ \\ {\mathbf a}_N
| |
− | \end{matrix} \right],
| |
− | </math></center>
| |
− | where <math>\mathbf{0}</math> denotes the zero-matrix which is of the same
| |
− | dimension as <math>{{\mathbf B}}_j</math>, say <math>n</math>. This matrix equation can be
| |
− | easily transformed into a classical <math>(N \, n)</math>-dimensional linear system of
| |
− | equations.
| |
− | | |
− | =Finite Depth Interaction Theory=
| |
− | | |
− | We will compare the performance of the infinite depth interaction theory
| |
− | with the equivalent theory for finite
| |
− | depth. As we have stated previously, the finite depth theory was
| |
− | developed by [[Kagemoto and Yue 1986]] and extended to bodies of arbitrary
| |
− | geometry by [[Goo and Yoshida 1990]]. We will briefly present this theory in
| |
− | our notation and the comparisons will be made in a later section.
| |
− | | |
− | In water of constant finite depth <math>d</math>, the scattered potential of a body
| |
− | <math>\Delta_j</math> can be expanded in cylindrical eigenfunctions,
| |
− | <center><math>
| |
− | \phi_j^\mathrm{S} (r_j,\theta_j,z) = \frac{\cosh k(z+d)}{\cosh kd}
| |
− | \sum_{\nu = - \infty}^{\infty} A_{0 \nu}^j H_\nu^{(1)} (k r_j) \mathrm{e}^{\mathrm{i}\nu
| |
− | \theta_j}
| |
− | + \sum_{m=1}^{\infty} \frac{\cos k_m (z+d)}{\cos kd} \sum_{\nu = -
| |
− | \infty}^{\infty} A_{m \nu}^j K_\nu (k_m r_j) \mathrm{e}^{\mathrm{i}\nu
| |
− | \theta_j},
| |
− | </math></center>
| |
− | with discrete coefficients <math>A_{m \nu}^j</math>. The positive wavenumber <math>k</math>
| |
− | is related to <math>\alpha</math> by the [[Dispersion Relation for a Free Surface]]
| |
− | <center><math>
| |
− | \alpha = k \mathrm{tanh} k d,\,
| |
− | </math></center>
| |
− | and the values of <math>k_m</math>, <math>m>0</math>, are given as positive real roots of
| |
− | [[Dispersion Relation for a Free Surface]]
| |
− | <center><math>
| |
− | \alpha + k_m \tan k_m d = 0\,
| |
− | </math></center>
| |
− | The incident potential upon body <math>\Delta_j</math> can be also be expanded in
| |
− | cylindrical eigenfunctions,
| |
− | <center><math>
| |
− | \phi_j^\mathrm{I} (r_j,\theta_j,z) = \frac{\cosh k(z+d)}{\cosh kd}
| |
− | \sum_{\mu = - \infty}^{\infty} D_{0 \mu}^j J_\mu (k r_j) \mathrm{e}^{\mathrm{i}\mu
| |
− | \theta_j}
| |
− | + \sum_{m=1}^{\infty} \frac{\cos k_m (z+d)}{\cos kd} \sum_{\mu = -
| |
− | \infty}^{\infty} D_{m\mu}^j I_\mu (k_m r_j) \mathrm{e}^{\mathrm{i}\mu
| |
− | \theta_j},
| |
− | </math></center>
| |
− | with discrete coefficients <math>D_{m\mu}^j</math>. A system of equations for the
| |
− | coefficients of the scattered wavefields for the bodies are derived
| |
− | in an analogous way to the infinite depth case. The derivation is
| |
− | simpler because all the coefficients are discrete and the
| |
− | diffraction transfer operator can be represented by an
| |
− | infinite dimensional matrix.
| |
− | Truncating the infinite dimensional matrix as well as the
| |
− | coefficient vectors appropriately, the resulting system of
| |
− | equations is given by
| |
− | <center><math>
| |
− | {\mathbf a}_l = {\mathbf B}_l \Big( {\mathbf d}_l^\mathrm{In} +
| |
− | \sum_{j=1,j \neq l}^{N} {\mathbf T}_{jl} \,
| |
− | {\mathbf a}_j \Big), l=1, \ldots, N,
| |
− | </math></center>
| |
− | where <math>{\mathbf a}_l</math> is the coefficient vector of the scattered
| |
− | wave, <math>{\mathbf d}_l^\mathrm{In}</math> is the coefficient vector of the
| |
− | ambient incident wave, <math>{\mathbf B}_l</math> is the diffraction transfer
| |
− | matrix of <math>\Delta_l</math> and <math>{\mathbf T}_{jl}</math> is the coordinate transformation
| |
− | matrix analogous to (T_elem_deep).
| |
− | | |
− | The calculation of the diffraction transfer matrices is
| |
− | also similar to the infinite depth case. [[Free-Surface Green Function]] for [[Finite Depth]]
| |
− | in cylindrical polar coordinates
| |
− | <center><math>
| |
− | G(r,\theta,z;s,\varphi,c)= \frac{\mathrm{i}}{2} \,
| |
− | \frac{\alpha^2-k^2}{d(\alpha^2-k^2)-\alpha}\, \cosh (z+d) \cosh k(c+d)
| |
− | \sum_{\nu=-\infty}^{\infty} H_\nu^{(1)}(k r) J_\nu(k s) \mathrm{e}^{\mathrm{i}\nu
| |
− | (\theta - \varphi)}
| |
− | </math></center>
| |
− | <center><math>
| |
− | + \frac{1}{\pi} \sum_{m=1}^{\infty}
| |
− | \frac{k_m^2+\alpha^2}{d(k_m^2+\alpha^2)-\alpha}\, \cos k_m(z+d) \cos
| |
− | k_m(c+d) \sum_{\nu=-\infty}^{\infty} K_\nu(k_m r) I_\nu(k_m s) \mathrm{e}^{\mathrm{i}\nu
| |
− | (\theta - \varphi)},
| |
− | </math></center>
| |
− | given by [[Black 1975]] and [[Fenton 1978]], needs to be used instead
| |
− | of the infinite depth Green's function (green_inf).
| |
− | The elements of <math>{\mathbf B}_j</math> are therefore given by
| |
− | <center><math>
| |
− | ({\mathbf B}_j)_{pq} = \frac{\mathrm{i}}{2} \,
| |
− | \frac{(\alpha^2-k^2)\cosh^2 kd}{d(\alpha^2-k^2)-\alpha} \int\limits_{\Gamma_j}
| |
− | \cosh k(c+d) J_p(\alpha s) \mathrm{e}^{-\mathrm{i}p \varphi} \varsigma_q^j(\mathbf{\zeta})
| |
− | \mathrm{d}\sigma_\mathbf{\zeta}
| |
− | </math></center>
| |
− | and
| |
− | <center><math>
| |
− | ({\mathbf B}_j)_{pq} = \frac{1}{\pi}
| |
− | \frac{(k_m^2+\alpha^2)\cos^2 k_md}{d(k_m^2+\alpha^2)-\alpha}
| |
− | \int\limits_{\Gamma_j} \cos k_m(c+d) I_p(\eta s) \mathrm{e}^{-\mathrm{i}p
| |
− | \varphi} \varsigma_q^j(\mathbf{\zeta}) \mathrm{d}\sigma_\mathbf{\zeta}
| |
− | </math></center>
| |
− | for the propagating and the decaying modes respectively, where
| |
− | <math>\varsigma_q^j(\mathbf{\zeta})</math> is the source strength distribution
| |
− | due to an incident potential of mode <math>q</math> of the form
| |
− | <center><math>
| |
− | \phi_q^{\mathrm{I}}(s,\varphi,c) = \frac{\cosh k_m(c+d)}{\cosh kd}
| |
− | H_q^{(1)} (k s) \mathrm{e}^{\mathrm{i}q \varphi}
| |
− | </math></center>
| |
− | for the propagating modes, and
| |
− | <center><math>
| |
− | \phi_q^{\mathrm{I}}(s,\varphi,c) = \frac{\cos k_m(c+d)}{\cos kd} K_q
| |
− | (k_m s) \mathrm{e}^{\mathrm{i}q \varphi}
| |
| </math></center> | | </math></center> |
− | for the decaying modes.
| + | <math>m \in \mathbb{N}</math>, <math>\mu \in \mathbb{Z}</math>, <math>l=1,\dots,N</math>. |