Difference between revisions of "Interaction Theory for Cylinders"
(23 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | = Introduction = | + | {{complete pages}} |
+ | |||
+ | == Introduction == | ||
We present an illustrative example of an interaction theory for the case of <math>n</math> | We present an illustrative example of an interaction theory for the case of <math>n</math> | ||
Line 6: | Line 8: | ||
body is a cylinder. | body is a cylinder. | ||
− | = Equations of Motion = | + | == Equations of Motion == |
After we have [[Removing the Depth Dependence|Removed the Depth Dependence]] | After we have [[Removing the Depth Dependence|Removed the Depth Dependence]] | ||
Line 13: | Line 15: | ||
subject to [[Helmholtz's Equation]] | subject to [[Helmholtz's Equation]] | ||
<center><math> | <center><math> | ||
− | \nabla^2 \phi | + | \nabla^2 \phi + k^2\phi= 0, |
</math></center> | </math></center> | ||
where <math>k</math> is the positive real root of the [[Dispersion Relation for a Free Surface]] | where <math>k</math> is the positive real root of the [[Dispersion Relation for a Free Surface]] | ||
<center><math> | <center><math> | ||
− | k \tanh k | + | k \tanh k h = \alpha,. |
</math></center> | </math></center> | ||
+ | where <math>\alpha</math> is the [[Infinite Depth]] wave number and | ||
+ | <math>h</math> is the water depth. | ||
− | =Eigenfunction expansion of the potential= | + | == Eigenfunction expansion of the potential == |
Each cylinder is subject to an incident potential and moves in response to this | Each cylinder is subject to an incident potential and moves in response to this | ||
Line 27: | Line 31: | ||
The scattered potential of cylinder | The scattered potential of cylinder | ||
<math>j</math> can be expressed as | <math>j</math> can be expressed as | ||
− | <center><math> | + | <center><math> |
\phi_j^\mathrm{S} (r_j,\theta_j,z) = \sum_{\mu = - | \phi_j^\mathrm{S} (r_j,\theta_j,z) = \sum_{\mu = - | ||
\infty}^{\infty} A_{\mu}^j H^{(1)}_\mu (k r_j) \mathrm{e}^{\mathrm{i}\mu \theta_j}, | \infty}^{\infty} A_{\mu}^j H^{(1)}_\mu (k r_j) \mathrm{e}^{\mathrm{i}\mu \theta_j}, | ||
Line 36: | Line 40: | ||
The incident potential upon cylinder <math>j</math> can be also be expanded in | The incident potential upon cylinder <math>j</math> can be also be expanded in | ||
regular cylindrical eigenfunctions, | regular cylindrical eigenfunctions, | ||
− | <center><math> | + | <center><math> |
\phi_j^\mathrm{I} (r_j,\theta_j,z) = | \phi_j^\mathrm{I} (r_j,\theta_j,z) = | ||
\sum_{\nu = - \infty}^{\infty} D_{\nu}^j J_\nu (k r_j) \mathrm{e}^{\mathrm{i}\nu \theta_j}, | \sum_{\nu = - \infty}^{\infty} D_{\nu}^j J_\nu (k r_j) \mathrm{e}^{\mathrm{i}\nu \theta_j}, | ||
</math></center> | </math></center> | ||
− | with discrete coefficients <math>D_{\nu}^j</math>. In these expansions, <math>J_\nu</math> | + | with discrete coefficients <math>D_{\nu}^j</math>. |
+ | |||
+ | In these expansions, <math>J_\nu</math> | ||
and <math>H^{(1)}_\nu</math> denote Bessel and Hankel function | and <math>H^{(1)}_\nu</math> denote Bessel and Hankel function | ||
− | respectively ([http://en.wikipedia.org/wiki/Bessel_function | + | respectively ([http://en.wikipedia.org/wiki/Bessel_function Bessel functions]) |
both of first kind and order <math>\nu</math>. For | both of first kind and order <math>\nu</math>. For | ||
comparison with the [[Kagemoto and Yue Interaction Theory]] | comparison with the [[Kagemoto and Yue Interaction Theory]] | ||
Line 54: | Line 60: | ||
Bessel functions of first and second kind, respectively, both of order <math>\nu</math>. | Bessel functions of first and second kind, respectively, both of order <math>\nu</math>. | ||
− | =Derivation of the system of equations= | + | == Derivation of the system of equations == |
A system of equations for the unknown | A system of equations for the unknown | ||
− | coefficients | + | coefficients of the |
scattered wavefields of all cylinders is developed. This system of | scattered wavefields of all cylinders is developed. This system of | ||
equations is based on transforming the | equations is based on transforming the | ||
Line 69: | Line 75: | ||
upon cylinder <math>l</math>, <math>j \neq l</math>. This can be accomplished by using | upon cylinder <math>l</math>, <math>j \neq l</math>. This can be accomplished by using | ||
[[Graf's Addition Theorem]] | [[Graf's Addition Theorem]] | ||
− | <center><math> | + | <center><math> |
H^{(1)}_\tau(k r_j) \mathrm{e}^{\mathrm{i}\tau (\theta_j-\varphi_{jl})} = | H^{(1)}_\tau(k r_j) \mathrm{e}^{\mathrm{i}\tau (\theta_j-\varphi_{jl})} = | ||
\sum_{\nu = - \infty}^{\infty} H^{(1)}_{\tau + \nu} (k R_{jl}) \, | \sum_{\nu = - \infty}^{\infty} H^{(1)}_{\tau + \nu} (k R_{jl}) \, | ||
Line 76: | Line 82: | ||
where <math>(R_{jl},\varphi_{jl})</math> are the polar coordinates of the mean centre position of cylinder <math>l</math> in the local coordinates of cylinder <math>j</math>. | where <math>(R_{jl},\varphi_{jl})</math> are the polar coordinates of the mean centre position of cylinder <math>l</math> in the local coordinates of cylinder <math>j</math>. | ||
− | Making use of the eigenfunction expansion as well as | + | Making use of the eigenfunction expansion as well as [[Graf's Addition Theorem]], the scattered potential |
− | of cylinder <math>j</math> | + | of cylinder <math>j</math> can be expressed in terms of the |
incident potential upon cylinder <math>l</math> as | incident potential upon cylinder <math>l</math> as | ||
<center><math> | <center><math> | ||
Line 126: | Line 132: | ||
R_{jl}) \mathrm{e}^{\mathrm{i}(\tau - \nu) \varphi_{jl}} \Big] J_\nu (k | R_{jl}) \mathrm{e}^{\mathrm{i}(\tau - \nu) \varphi_{jl}} \Big] J_\nu (k | ||
r_l) \mathrm{e}^{\mathrm{i}\nu \theta_l}. | r_l) \mathrm{e}^{\mathrm{i}\nu \theta_l}. | ||
+ | </math></center> | ||
+ | Therefore it follows that | ||
+ | <center><math> | ||
+ | {D}_\nu^{l} | ||
+ | = \tilde{D}_\nu^{l} + | ||
+ | \sum_{j=1,j \neq l}^{n} \sum_{\tau = | ||
+ | -\infty}^{\infty} A_{\tau}^j H^{(1)}_{\tau - \nu} (k | ||
+ | R_{jl}) \mathrm{e}^{\mathrm{i}(\tau - \nu) \varphi_{jl}}. | ||
</math></center> | </math></center> | ||
− | = Final Equations = | + | == Final Equations == |
The scattered and incident potential can be related by the | The scattered and incident potential can be related by the | ||
− | [[Diffraction Transfer Matrix]] for a [[Bottom Mounted Cylinder]] | + | [[Diffraction Transfer Matrix]] for a [[Bottom Mounted Cylinder]] so that, |
<center><math> | <center><math> | ||
− | + | A_{\mu}^l= -\frac{J'_\nu(k a_l)}{H^{(1)}_\nu{}'(k a_l)} D_{\nu}^l . | |
− | |||
− | |||
− | |||
− | |||
</math></center> | </math></center> | ||
− | + | This gives the | |
required equations to determine the coefficients of the scattered | required equations to determine the coefficients of the scattered | ||
wavefields of all bodies, | wavefields of all bodies, | ||
<center><math> | <center><math> | ||
− | \frac{J'_\ | + | \frac{J'_\nu(k a_l)}{H^{(1)}_\nu{}'(k a_l)} \Big[ |
− | |||
− | \Big[ | ||
\sum_{j=1,j \neq l}^{N} \sum_{\tau = | \sum_{j=1,j \neq l}^{N} \sum_{\tau = | ||
-\infty}^{\infty} A_{\tau}^j H^{(1)}_{\tau - \nu} (k | -\infty}^{\infty} A_{\tau}^j H^{(1)}_{\tau - \nu} (k | ||
− | R_{jl}) \mathrm{e}^{\mathrm{i}(\tau -\nu) \varphi_{jl}} \Big], | + | R_{jl}) \mathrm{e}^{\mathrm{i}(\tau -\nu) \varphi_{jl}} \Big] |
+ | + A_{\nu}^l = - | ||
+ | \frac{J'_\nu(k a_l)}{H^{(1)}_\nu{}'(k a_l)} | ||
+ | \tilde{D}_{\nu}^{l}, | ||
</math></center> | </math></center> | ||
<math>\mu \in \mathbb{Z}</math>, <math>l=1,\dots,n</math>. | <math>\mu \in \mathbb{Z}</math>, <math>l=1,\dots,n</math>. | ||
+ | |||
+ | [[Category:Interaction Theory]] |
Latest revision as of 08:15, 19 October 2009
Introduction
We present an illustrative example of an interaction theory for the case of [math]\displaystyle{ n }[/math] Bottom Mounted Cylinders. This theory was presented in Linton and Evans 1990 and it can be derived from the Kagemoto and Yue Interaction Theory by simply assuming that each body is a cylinder.
Equations of Motion
After we have Removed the Depth Dependence the problem consists of [math]\displaystyle{ n }[/math] cylinders of radius [math]\displaystyle{ a_j }[/math] whose center is at [math]\displaystyle{ (x_j,y_j) }[/math] subject to Helmholtz's Equation
where [math]\displaystyle{ k }[/math] is the positive real root of the Dispersion Relation for a Free Surface
where [math]\displaystyle{ \alpha }[/math] is the Infinite Depth wave number and [math]\displaystyle{ h }[/math] is the water depth.
Eigenfunction expansion of the potential
Each cylinder is subject to an incident potential and moves in response to this incident potential to produce a scattered potential. Each of these is expanded using the Cylindrical Eigenfunction Expansion The scattered potential of cylinder [math]\displaystyle{ j }[/math] can be expressed as
with discrete coefficients [math]\displaystyle{ A_{\mu}^j }[/math], where [math]\displaystyle{ (r_j,\theta_j) }[/math] are polar coordinates centered at center of the [math]\displaystyle{ j }[/math]th cylinder.
The incident potential upon cylinder [math]\displaystyle{ j }[/math] can be also be expanded in regular cylindrical eigenfunctions,
with discrete coefficients [math]\displaystyle{ D_{\nu}^j }[/math].
In these expansions, [math]\displaystyle{ J_\nu }[/math] and [math]\displaystyle{ H^{(1)}_\nu }[/math] denote Bessel and Hankel function respectively (Bessel functions) both of first kind and order [math]\displaystyle{ \nu }[/math]. For comparison with the Kagemoto and Yue Interaction Theory (which is written slightly differently), we remark that, for real [math]\displaystyle{ x }[/math],
with [math]\displaystyle{ I_\nu }[/math] and [math]\displaystyle{ K_\nu }[/math] denoting the modified Bessel functions of first and second kind, respectively, both of order [math]\displaystyle{ \nu }[/math].
Derivation of the system of equations
A system of equations for the unknown coefficients of the scattered wavefields of all cylinders is developed. This system of equations is based on transforming the scattered potential of cylinder [math]\displaystyle{ j }[/math] into an incident potential upon cylinder [math]\displaystyle{ l }[/math] ([math]\displaystyle{ j \neq l }[/math]). Doing this for all cylinders simultaneously, and relating the incident and scattered potential for each cylinder, a system of equations for the unknown coefficients is developed.
The scattered potential [math]\displaystyle{ \phi_j^{\mathrm{S}} }[/math] of cylinder [math]\displaystyle{ j }[/math] needs to be represented in terms of the incident potential [math]\displaystyle{ \phi_l^{\mathrm{I}} }[/math] upon cylinder [math]\displaystyle{ l }[/math], [math]\displaystyle{ j \neq l }[/math]. This can be accomplished by using Graf's Addition Theorem
where [math]\displaystyle{ (R_{jl},\varphi_{jl}) }[/math] are the polar coordinates of the mean centre position of cylinder [math]\displaystyle{ l }[/math] in the local coordinates of cylinder [math]\displaystyle{ j }[/math].
Making use of the eigenfunction expansion as well as Graf's Addition Theorem, the scattered potential of cylinder [math]\displaystyle{ j }[/math] can be expressed in terms of the incident potential upon cylinder [math]\displaystyle{ l }[/math] as
The ambient incident wavefield [math]\displaystyle{ \phi^{\mathrm{In}} }[/math] can also be expanded in the eigenfunctions corresponding to the incident wavefield upon cylinder [math]\displaystyle{ l }[/math] (cf. the example in Cylindrical Eigenfunction Expansion)
Let [math]\displaystyle{ \tilde{D}_{\nu}^{l} }[/math] denote the coefficients of this ambient incident wavefield in the incoming eigenfunction expansion for [math]\displaystyle{ \Delta_l }[/math] so that
The total
incident wavefield upon cylinder [math]\displaystyle{ j }[/math] can now be expressed as
which can be written as
Therefore it follows that
Final Equations
The scattered and incident potential can be related by the Diffraction Transfer Matrix for a Bottom Mounted Cylinder so that,
This gives the required equations to determine the coefficients of the scattered wavefields of all bodies,
[math]\displaystyle{ \mu \in \mathbb{Z} }[/math], [math]\displaystyle{ l=1,\dots,n }[/math].