Difference between revisions of "Derivative Seakeeping Quantities"

From WikiWaves
Jump to navigationJump to search
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<u>Derivative seakeeping quantities</u>
+
{{Ocean Wave Interaction with Ships and Offshore Structures
 +
| chapter title = Derivative Seakeeping Quantities
 +
| next chapter = [[Seakeeping In Random Waves]]
 +
| previous chapter = [[Ship Roll-Sway-Yaw Motions]]
 +
}}
 +
 
 +
{{incomplete pages}}
 +
 
  
 
The principal seakeeping quantity from a seakeeping analysis of a floating body at zero or forward speed is the Response Amplitude Operator (or RAO)
 
The principal seakeeping quantity from a seakeeping analysis of a floating body at zero or forward speed is the Response Amplitude Operator (or RAO)
  
<center><math> \xi_j(t) = \mathbb{R}\mathbf{e} \left\{ \Pi_j (\omega) e^{i\omega t} \right\} \, </math></center>
+
<center><math> \xi_j(t) = \mathrm{Re} \left\{ \Pi_j (\omega) e^{i\omega t} \right\} \, </math></center>
  
 
<center><math> RAO = \frac{\Pi_j(\omega)}{A}, \quad j=1,2,3 \, </math></center>
 
<center><math> RAO = \frac{\Pi_j(\omega)}{A}, \quad j=1,2,3 \, </math></center>
Line 11: Line 18:
 
where <math>L\,</math> is a characteristic length. The RAO is a complex quantity with phase defined relative to the ambient wave elevation at the origin of the coordinate system
 
where <math>L\,</math> is a characteristic length. The RAO is a complex quantity with phase defined relative to the ambient wave elevation at the origin of the coordinate system
  
<center><math> \zeta_I = \mathbb{R}\mathbf{e} \left\{ A e^{i\omega t} \right\} \, </math></center>
+
<center><math> \zeta_I = \mathrm{Re} \left\{ A e^{i\omega t} \right\} \, </math></center>
  
 
It follows that the only seakeeping quantity with <math>RAO\equiv 1 \,</math> is <math> \zeta_I(t)\,</math>.
 
It follows that the only seakeeping quantity with <math>RAO\equiv 1 \,</math> is <math> \zeta_I(t)\,</math>.
Line 27: Line 34:
 
According to linear theory, all derivative quantities which are linear superpositions of other quantities, take the form
 
According to linear theory, all derivative quantities which are linear superpositions of other quantities, take the form
  
<center><math> Z(t) = \mathbb{R}\mathbf{e} \left\{ \mathbb{Z}(\omega) e^{i\omega t} \right\}, \quad RAO=\frac{\mathbb{Z}(\omega)}{A} </math></center>
+
<center><math> Z(t) = \mathrm{Re} \left\{ \mathbb{Z}(\omega) e^{i\omega t} \right\}, \quad RAO=\frac{\mathbb{Z}(\omega)}{A} </math></center>
 
 
<u>Example 1</u>
 
  
* Acceleration RAO at the bow of a ship
+
==Example 1 - Acceleration RAO at the bow of a ship==
  
 
The vertical displacement of point <math>A\,</math> due to the vessel heave & pitch motions is
 
The vertical displacement of point <math>A\,</math> due to the vessel heave & pitch motions is
Line 37: Line 42:
 
<center><math> \xi_A (t) = \xi_3 (t) - X_A \xi_5 (t) \, </math></center>
 
<center><math> \xi_A (t) = \xi_3 (t) - X_A \xi_5 (t) \, </math></center>
  
<center><math> \frac{d^2\xi_A(t)}{dt^2} = \ddot{\xi}_3(t) - X_A \ddot{\xi}_5(t) = \mathbb{R}\mathbf{e} \left\{ -\omega^2 \left[ \Pi_3 - X_A \Pi_5 \right] e^{i\omega t} \right\} </math></center>
+
<center><math> \frac{d^2\xi_A(t)}{dt^2} = \ddot{\xi}_3(t) - X_A \ddot{\xi}_5(t) = \mathrm{Re} \left\{ -\omega^2 \left[ \Pi_3 - X_A \Pi_5 \right] e^{i\omega t} \right\} </math></center>
  
 
So the corresponding RAO in waves of amplitude <math>A\,</math> is:
 
So the corresponding RAO in waves of amplitude <math>A\,</math> is:
Line 45: Line 50:
 
So the RAO of the vertical acceleration at the bow is a linear combination of the heave and pitch RAO's.
 
So the RAO of the vertical acceleration at the bow is a linear combination of the heave and pitch RAO's.
  
<u>Example 2</u>
+
==Example 2 - Hydrodynamic pressure disturbance at a fixed point on a ship hull oscillating in heave & pitch in waves==
 
 
* Hydrodynamic pressure disturbance at a fixed point on a ship hull oscillating in heave & pitch in waves
 
  
 
The linear hydrodynamic pressures at a point <math>A\,</math> located at <math> \vec{X}_A\,</math> relative to the ship frame is:
 
The linear hydrodynamic pressures at a point <math>A\,</math> located at <math> \vec{X}_A\,</math> relative to the ship frame is:
  
<center><math> P_A = \mathbb{R}\mathbf{e} \left\{ \mathbb{P}_A e^{i\omega t} \right\} \, </math></center>
+
<center><math> P_A = \mathrm{Re} \left\{ \mathbb{P}_A e^{i\omega t} \right\} \, </math></center>
  
 
where
 
where
  
<center><math> \mathbb{P}_A = - \rho \left\{ \left( i\omega - U \frac{\partial}{\partial X} \right) \left( \phi_3 + \phi_5 \right) + \right. \,</math></center>
+
<center><math> \mathbb{P}_A = - \rho \left\{ \left( i\omega - U \frac{\partial}{\partial X} \right) \left( \phi_3 + \phi_5 \right) + \left( i\omega - U \frac{\partial}{\partial x} \right) \left( \phi_I + \phi_D \right) + g \left( \Pi_3 - X \Pi_5 \right) \right\} _{\vec{X}_A} \, </math></center>
<center><math> \left. \left( i\omega - U \frac{\partial}{\partial x} \right) \left( \phi_I + \phi_D \right) + g \left( \Pi_3 - X \Pi_5 \right) \right\} _{\vec{X}_A} \, </math></center>
 
  
 
<center><math> RAO = \frac{\mathbb{P}_A}{A} \, </math></center>.
 
<center><math> RAO = \frac{\mathbb{P}_A}{A} \, </math></center>.

Latest revision as of 09:12, 16 October 2009

Wave and Wave Body Interactions
Current Chapter Derivative Seakeeping Quantities
Next Chapter Seakeeping In Random Waves
Previous Chapter Ship Roll-Sway-Yaw Motions




The principal seakeeping quantity from a seakeeping analysis of a floating body at zero or forward speed is the Response Amplitude Operator (or RAO)

[math]\displaystyle{ \xi_j(t) = \mathrm{Re} \left\{ \Pi_j (\omega) e^{i\omega t} \right\} \, }[/math]
[math]\displaystyle{ RAO = \frac{\Pi_j(\omega)}{A}, \quad j=1,2,3 \, }[/math]
[math]\displaystyle{ = \frac{\Pi_j(\omega)}{A/L}, \quad j=4,5,6 \, }[/math]

where [math]\displaystyle{ L\, }[/math] is a characteristic length. The RAO is a complex quantity with phase defined relative to the ambient wave elevation at the origin of the coordinate system

[math]\displaystyle{ \zeta_I = \mathrm{Re} \left\{ A e^{i\omega t} \right\} \, }[/math]

It follows that the only seakeeping quantity with [math]\displaystyle{ RAO\equiv 1 \, }[/math] is [math]\displaystyle{ \zeta_I(t)\, }[/math].

A partial list of derivative seakeeping quantities of interest in practice is:

  • Free-surface elevation. Needed to estimate the clearance under the deck of offshore platforms.
  • Vessel kinematics at specified points, e.g. needed to estimate the motion properties of containerized cargo.
  • Relative wave elevation and velocity near the bow of a ship. Needed to estimate the occurrence and severity of slamming.
  • Local and global structural loads needed for the vessel structural design.

According to linear theory, all derivative quantities which are linear superpositions of other quantities, take the form

[math]\displaystyle{ Z(t) = \mathrm{Re} \left\{ \mathbb{Z}(\omega) e^{i\omega t} \right\}, \quad RAO=\frac{\mathbb{Z}(\omega)}{A} }[/math]

Example 1 - Acceleration RAO at the bow of a ship

The vertical displacement of point [math]\displaystyle{ A\, }[/math] due to the vessel heave & pitch motions is

[math]\displaystyle{ \xi_A (t) = \xi_3 (t) - X_A \xi_5 (t) \, }[/math]
[math]\displaystyle{ \frac{d^2\xi_A(t)}{dt^2} = \ddot{\xi}_3(t) - X_A \ddot{\xi}_5(t) = \mathrm{Re} \left\{ -\omega^2 \left[ \Pi_3 - X_A \Pi_5 \right] e^{i\omega t} \right\} }[/math]

So the corresponding RAO in waves of amplitude [math]\displaystyle{ A\, }[/math] is:

[math]\displaystyle{ RAO = \frac{-\omega^2 \left(\Pi_3 -X_A \Pi_5 \right)}{A} = -\omega^2 \left(RAO_3 - X_A RAO_5 \right) }[/math]

So the RAO of the vertical acceleration at the bow is a linear combination of the heave and pitch RAO's.

Example 2 - Hydrodynamic pressure disturbance at a fixed point on a ship hull oscillating in heave & pitch in waves

The linear hydrodynamic pressures at a point [math]\displaystyle{ A\, }[/math] located at [math]\displaystyle{ \vec{X}_A\, }[/math] relative to the ship frame is:

[math]\displaystyle{ P_A = \mathrm{Re} \left\{ \mathbb{P}_A e^{i\omega t} \right\} \, }[/math]

where

[math]\displaystyle{ \mathbb{P}_A = - \rho \left\{ \left( i\omega - U \frac{\partial}{\partial X} \right) \left( \phi_3 + \phi_5 \right) + \left( i\omega - U \frac{\partial}{\partial x} \right) \left( \phi_I + \phi_D \right) + g \left( \Pi_3 - X \Pi_5 \right) \right\} _{\vec{X}_A} \, }[/math]
[math]\displaystyle{ RAO = \frac{\mathbb{P}_A}{A} \, }[/math]

.


Ocean Wave Interaction with Ships and Offshore Energy Systems