Difference between revisions of "Template:Separation of variables in cylindrical coordinates"

From WikiWaves
Jump to navigationJump to search
 
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
=== Separation for Cylindrical Coordinates ===
 +
 
We now separate variables, noting that since the problem has
 
We now separate variables, noting that since the problem has
 
circular symmetry we can write the potential as
 
circular symmetry we can write the potential as
 
<center>
 
<center>
 
<math>
 
<math>
\phi(r,\theta,z)=\zeta(z)\sum_{n=-\infty}^{\infty}\rho_{n}(r)e^{i n \theta}
+
\phi(r,\theta,z)=\frac{\cos k(z+h)}{\cos kh}\sum_{n=-\infty}^{\infty}\rho_{n}(r)e^{i n \theta}
 
</math>
 
</math>
 
</center>
 
</center>
Line 12: Line 14:
 
\frac{\mathrm{d}^{2}\rho_{n}}{\mathrm{d}r^{2}}+\frac{1}{r}  
 
\frac{\mathrm{d}^{2}\rho_{n}}{\mathrm{d}r^{2}}+\frac{1}{r}  
 
\frac{\mathrm{d}\rho_{n}}{\mathrm{d}r}-\left(  
 
\frac{\mathrm{d}\rho_{n}}{\mathrm{d}r}-\left(  
\frac{n^{2}}{r^{2}}+\mu^{2}\right)  \rho_{n}=0
+
\frac{n^{2}}{r^{2}}+k^{2}\right)  \rho_{n}=0.
 
</math>
 
</math>
 
</center>
 
</center>
where <math>\mu</math> is <math>k_{m}</math> or
+
We can convert this equation to the
<math>\kappa_{m},</math> depending on whether <math>r</math> is
+
standard form by substituting <math>y=k r</math> (provided that
greater or less than <math>a</math>. We can convert this equation to the
 
standard form by substituting <math>y=\mu r</math> (provided that
 
 
<math>\mu\neq 0</math>to obtain
 
<math>\mu\neq 0</math>to obtain
 
<center>
 
<center>
Line 29: Line 29:
 
modified Bessel functions of order <math>n</math>, <math>I_{n}(y)</math> and
 
modified Bessel functions of order <math>n</math>, <math>I_{n}(y)</math> and
 
<math>K_{n}(y)</math> ([[Abramowitz and Stegun 1964]]).
 
<math>K_{n}(y)</math> ([[Abramowitz and Stegun 1964]]).
 +
 +
Therefore
 +
<center>
 +
<math>
 +
\rho_n(r) = C_1 I_{n}(kr) + C_2 K_{n}(kr)\,
 +
</math>
 +
</center>
 +
for some constants <math>C_1</math> and <math>C_2</math>

Latest revision as of 09:00, 27 September 2008

Separation for Cylindrical Coordinates

We now separate variables, noting that since the problem has circular symmetry we can write the potential as

[math]\displaystyle{ \phi(r,\theta,z)=\frac{\cos k(z+h)}{\cos kh}\sum_{n=-\infty}^{\infty}\rho_{n}(r)e^{i n \theta} }[/math]

We now solve for the function [math]\displaystyle{ \rho_{n}(r) }[/math]. Using Laplace's equation in polar coordinates we obtain

[math]\displaystyle{ \frac{\mathrm{d}^{2}\rho_{n}}{\mathrm{d}r^{2}}+\frac{1}{r} \frac{\mathrm{d}\rho_{n}}{\mathrm{d}r}-\left( \frac{n^{2}}{r^{2}}+k^{2}\right) \rho_{n}=0. }[/math]

We can convert this equation to the standard form by substituting [math]\displaystyle{ y=k r }[/math] (provided that [math]\displaystyle{ \mu\neq 0 }[/math]to obtain

[math]\displaystyle{ y^{2}\frac{\mathrm{d}^{2}\rho_{n}}{\mathrm{d}y^{2}}+y\frac{\mathrm{d}\rho_{n} }{\rm{d}y}-(n^{2}+y^{2})\rho_{n}=0 }[/math]

The solution of this equation is a linear combination of the modified Bessel functions of order [math]\displaystyle{ n }[/math], [math]\displaystyle{ I_{n}(y) }[/math] and [math]\displaystyle{ K_{n}(y) }[/math] (Abramowitz and Stegun 1964).

Therefore

[math]\displaystyle{ \rho_n(r) = C_1 I_{n}(kr) + C_2 K_{n}(kr)\, }[/math]

for some constants [math]\displaystyle{ C_1 }[/math] and [math]\displaystyle{ C_2 }[/math]