Difference between revisions of "Sommerfeld Radiation Condition"
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{complete pages}} | ||
+ | |||
This is a condition for the [[Frequency Domain Problem]] that the scattered wave is only | This is a condition for the [[Frequency Domain Problem]] that the scattered wave is only | ||
outgoing at infinity. It depends on the convention regarding whether the time dependence | outgoing at infinity. It depends on the convention regarding whether the time dependence | ||
− | is <math>\exp (i\omega t)\,</math> or <math>\exp (-i\omega t)\,</math> | + | is <math>\exp (i\omega t)\,</math> or <math>\exp (-i\omega t)\,</math>. |
− | Assuming the former (which is the standard convention on this wiki) | + | Assuming the former (which is the standard convention on this wiki). |
− | In two | + | In two dimensions the condition is |
<center> | <center> | ||
<math> | <math> | ||
− | \left( \frac{\partial}{\partial|x|}+{i}k\right) | + | \left( \frac{\partial}{\partial|x|}+\mathrm{i}k\right) |
− | (\phi-\phi^{\mathrm{{In}}}) | + | (\phi-\phi^{\mathrm{{In}}})\rightarrow0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.} |
</math> | </math> | ||
</center> | </center> | ||
Line 13: | Line 15: | ||
is the wave number. | is the wave number. | ||
− | In three | + | In three dimensions the condition is |
<center> | <center> | ||
<math> | <math> | ||
− | + | r^{1/2}\left( \frac{\partial}{\partial r}+\mathrm{i}k\right) | |
− | (\phi-\phi^{\mathrm{{In}}}) | + | (\phi-\phi^{\mathrm{{In}}})\rightarrow0,\;\mathrm{{as\;}}r\rightarrow\infty\mathrm{.} |
</math> | </math> | ||
</center> | </center> | ||
− | If the time dependence is assumed to be <math>\exp (-i\omega t)\,</math> then we | + | If the time dependence is assumed to be <math>\exp (-i\omega t)\,</math>, then we |
− | have in two | + | have in two dimensions |
<center> | <center> | ||
<math> | <math> | ||
− | \left( \frac{\partial}{\partial|x|}-{i}k\right) | + | \left( \frac{\partial}{\partial|x|}-\mathrm{i}k\right) |
− | (\phi-\phi^{\mathrm{{In}}}) | + | (\phi-\phi^{\mathrm{{In}}})\rightarrow0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.} |
</math> | </math> | ||
</center> | </center> | ||
− | and in three | + | and in three dimensions |
<center> | <center> | ||
<math> | <math> | ||
− | + | r^{1/2}\left( \frac{\partial}{\partial r}-\mathrm{i}k\right) | |
− | (\phi-\phi^{\mathrm{{In}}}) | + | (\phi-\phi^{\mathrm{{In}}})\rightarrow0,\;\mathrm{{as\;}}r\rightarrow\infty\mathrm{.} |
</math> | </math> | ||
</center> | </center> | ||
[[Category:Linear Water-Wave Theory]] | [[Category:Linear Water-Wave Theory]] |
Latest revision as of 04:55, 4 September 2012
This is a condition for the Frequency Domain Problem that the scattered wave is only outgoing at infinity. It depends on the convention regarding whether the time dependence is [math]\displaystyle{ \exp (i\omega t)\, }[/math] or [math]\displaystyle{ \exp (-i\omega t)\, }[/math]. Assuming the former (which is the standard convention on this wiki). In two dimensions the condition is
[math]\displaystyle{ \left( \frac{\partial}{\partial|x|}+\mathrm{i}k\right) (\phi-\phi^{\mathrm{{In}}})\rightarrow0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.} }[/math]
where [math]\displaystyle{ \phi^{\mathrm{{In}}} }[/math] is the incident potential and [math]\displaystyle{ k }[/math] is the wave number.
In three dimensions the condition is
[math]\displaystyle{ r^{1/2}\left( \frac{\partial}{\partial r}+\mathrm{i}k\right) (\phi-\phi^{\mathrm{{In}}})\rightarrow0,\;\mathrm{{as\;}}r\rightarrow\infty\mathrm{.} }[/math]
If the time dependence is assumed to be [math]\displaystyle{ \exp (-i\omega t)\, }[/math], then we have in two dimensions
[math]\displaystyle{ \left( \frac{\partial}{\partial|x|}-\mathrm{i}k\right) (\phi-\phi^{\mathrm{{In}}})\rightarrow0,\;\mathrm{{as\;}}|x|\rightarrow\infty\mathrm{.} }[/math]
and in three dimensions
[math]\displaystyle{ r^{1/2}\left( \frac{\partial}{\partial r}-\mathrm{i}k\right) (\phi-\phi^{\mathrm{{In}}})\rightarrow0,\;\mathrm{{as\;}}r\rightarrow\infty\mathrm{.} }[/math]