Difference between revisions of "Eigenfunctions for a Uniform Free Beam"

From WikiWaves
Jump to navigationJump to search
 
(26 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
{{complete pages}}
 +
 
== Introduction ==
 
== Introduction ==
  
Line 5: Line 7:
 
== Equations ==
 
== Equations ==
  
{{equations for a free beam}}
+
{{equations for a eigenfunction of a free beam}}
  
 
== Solution ==
 
== Solution ==
  
General solution of the differential equation is :
+
General solution of the differential equation for <math>\lambda \neq 0</math> is
 
<center>
 
<center>
<math>w_n(x) = C_1 \sin(\lambda_n x) + C_2 \cos(\lambda_n x) + C_3 \sinh(\lambda_n x) + C_4 \cosh(\lambda_n x)\,</math>
+
<math>X_n(x) = C_1 \sin(\lambda_n x) + C_2 \cos(\lambda_n x) + C_3 \sinh(\lambda_n x) + C_4 \cosh(\lambda_n x)\,</math>
 
</center>
 
</center>
 
Due to symmetry of the problem, dry natural vibrations of a free beam can be split into two different sets of modes, symmetric (even) modes and skew-symmetric (odd) modes.
 
Due to symmetry of the problem, dry natural vibrations of a free beam can be split into two different sets of modes, symmetric (even) modes and skew-symmetric (odd) modes.
 +
 +
== Modes for <math>\lambda = 0</math> ==
 +
 +
There are two modes for <math>\lambda = 0</math>  which are the two rigid body motions; they are given by
 +
{{rigid modes for an elastic plate}}
  
 
== Symmetric modes ==
 
== Symmetric modes ==
Line 55: Line 62:
 
Symmetric natural modes can be written in normalized form as :
 
Symmetric natural modes can be written in normalized form as :
 
<center>
 
<center>
<math>w_n(x) = \frac{1}{2}\left( \frac{\cos(\lambda_n x)}{\cos(\lambda_n L)}+\frac{\cosh(\lambda_n x)}{\cosh(\lambda_n L)} \right )
+
<math>X_{2n}(x) = \frac{1}{\sqrt{2L}}\left( \frac{\cos(\lambda_{2n} x)}{\cos(\lambda_{2n} L)}+\frac{\cosh(\lambda_{2n} x)}{\cosh(\lambda_{2n} L)} \right )
 +
\,\,\,n\geq 1
 
</math>
 
</math>
 
</center>
 
</center>
 
+
where the
 
+
The symmetric modes have been normalised so that their inner products equal the Kronecker delta.
The symmetric modes can also be nomalised so that their inner products equal the Kronecker delta by letting :
 
<center>
 
<math>w_n(x) = C\left( \cosh(\lambda_n L)\cos(\lambda_n x) + \cos(\lambda_n L)\cosh(\lambda_n x) \right )
 
</math>
 
</center>
 
where :
 
<center>
 
<math>C = \sqrt(2 \lambda_n)/\sqrt(\lambda_n L (2+\cos(2 \lambda_n L)+ \cosh(2 \lambda_n L))+3(\cosh(\lambda_n L))^2 \sin(2 \lambda_n L)+ 3(\cos(\lambda_n L))^2\sinh(2\lambda_n L));</math>
 
</center>
 
  
 
== Anti-symmetric modes ==
 
== Anti-symmetric modes ==
Line 76: Line 75:
 
</center>
 
</center>
  
By imposing boundary conditions at <math>x = l</math> :
+
By imposing boundary conditions at <math>x = L</math> :
  
 
<center>
 
<center>
Line 89: Line 88:
 
C_3\\  
 
C_3\\  
 
\end{bmatrix}
 
\end{bmatrix}
 
 
  =  
 
  =  
 
 
\begin{bmatrix}
 
\begin{bmatrix}
 
0\\
 
0\\
Line 112: Line 109:
 
Anti-symmetric natural modes can be written in normalized form as :
 
Anti-symmetric natural modes can be written in normalized form as :
 
<center>
 
<center>
<math>w_n(x) = \frac{1}{\sqrt{2L}}\left( \frac{\sin(\lambda_n x)}{\sin(\lambda_n L)}+\frac{\sinh(\lambda_n x)}{\sinh(\lambda_n L)} \right )
+
<math>X_{2n+1}(x) = \frac{1}{\sqrt{2L}}\left( \frac{\sin(\lambda_{2n+1} x)}{\sin(\lambda_{2n+1} L)}+\frac{\sinh(\lambda_{2n+1} x)}{\sinh(\lambda_{2n+1} L)} \right )
 +
\,\,\,n\geq 1
 
</math>
 
</math>
 
</center>
 
</center>
 
where the eigenfunctions have been chosen so that their inner products equal the Kronecker delta.
 
where the eigenfunctions have been chosen so that their inner products equal the Kronecker delta.
  
== Natural Frequencies ==
+
== Equations for a beam ==
 +
{{equations for a beam}}
 +
 
 +
== Solution for a uniform beam in [[Eigenfunctions for a Uniform Free Beam|eigenfunctions]] ==
 +
 
 +
{{solution for a uniform beam in eigenfunctions}}
 +
 
  
The equation in the time domain for a beam is
+
 
<center>
+
== Matlab Code ==
<math>
+
 
m\partial_t^2 w + EI \partial_x^4 w = 0
+
A program to calculate the eigenvalues can be found here
</math>
+
{{eigenvalues beam}}
</center>
+
 
so that, having obtained eigenvalues <math>\lambda_n</math>, the natural frequency can be readily calculated :
+
A program to calculate the eigenvectors can be found here
<center>
+
{{eigenvectors beam}}
<math>\omega_n = \lambda_n^2 \sqrt\frac{EI}{m}</math>
+
 
</center>
+
[[Category:Complete Pages]]
 +
[[Category:Simple Linear Waves]]

Latest revision as of 16:12, 8 December 2009


Introduction

We show here how to find the eigenfunction for a beam with free edge conditions.

Equations

We can find eigenfunctions which satisfy

[math]\displaystyle{ \partial_x^4 X_n = \lambda_n^4 X_n \,\,\, -L \leq x \leq L }[/math]

plus the edge conditions of zero bending moment and shear stress

[math]\displaystyle{ \begin{matrix} \partial_x^3 X_n= 0 \;\;\;\; \mbox{ at } z = 0 \;\;\; x = \pm L, \end{matrix} }[/math]
[math]\displaystyle{ \begin{matrix} \partial_x^2 X_n = 0 \;\;\; \mbox{ at } z = 0 \;\;\; x = \pm L. \end{matrix} }[/math]

Solution

General solution of the differential equation for [math]\displaystyle{ \lambda \neq 0 }[/math] is

[math]\displaystyle{ X_n(x) = C_1 \sin(\lambda_n x) + C_2 \cos(\lambda_n x) + C_3 \sinh(\lambda_n x) + C_4 \cosh(\lambda_n x)\, }[/math]

Due to symmetry of the problem, dry natural vibrations of a free beam can be split into two different sets of modes, symmetric (even) modes and skew-symmetric (odd) modes.

Modes for [math]\displaystyle{ \lambda = 0 }[/math]

There are two modes for [math]\displaystyle{ \lambda = 0 }[/math] which are the two rigid body motions; they are given by

[math]\displaystyle{ X_0 = \frac{1}{\sqrt{2L}} }[/math]

and

[math]\displaystyle{ X_1 = \sqrt{\frac{3}{2L^3}} x }[/math]

Symmetric modes

[math]\displaystyle{ C_1 = C_3 = 0 \Rightarrow w_n(x) = C_2 \cos(\lambda_n x) + C_4 \cosh(\lambda_n x) }[/math]

By imposing boundary conditions at [math]\displaystyle{ x = L }[/math] :

[math]\displaystyle{ \begin{bmatrix} - \cos(\lambda_n L)&\cosh(\lambda_n L)\\ \sin(\lambda_n L)&\sinh(\lambda_n L)\\ \end{bmatrix} \begin{bmatrix} C_2\\ C_4\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \end{bmatrix} }[/math]

For a nontrivial solution one gets:

[math]\displaystyle{ \tan(\lambda_n L)+\tanh(\lambda_n L)=0\, }[/math]

The first three roots are :

[math]\displaystyle{ \lambda_0 L = 0, \lambda_2 L = 2.365, \lambda_4 L = 5.497\, }[/math]


Symmetric natural modes can be written in normalized form as :

[math]\displaystyle{ X_{2n}(x) = \frac{1}{\sqrt{2L}}\left( \frac{\cos(\lambda_{2n} x)}{\cos(\lambda_{2n} L)}+\frac{\cosh(\lambda_{2n} x)}{\cosh(\lambda_{2n} L)} \right ) \,\,\,n\geq 1 }[/math]

where the The symmetric modes have been normalised so that their inner products equal the Kronecker delta.

Anti-symmetric modes

[math]\displaystyle{ C_2 = C_4 = 0 \Rightarrow w_n(x) = C_1 \sin(\lambda_n x) + C_3 \sinh(\lambda_n x) }[/math]

By imposing boundary conditions at [math]\displaystyle{ x = L }[/math] :

[math]\displaystyle{ \begin{bmatrix} - \sin(\lambda_n L)&\sinh(\lambda_n L)\\ -\cos(\lambda_n L)&\cosh(\lambda_n L)\\ \end{bmatrix} \begin{bmatrix} C_1\\ C_3\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ \end{bmatrix} }[/math]

For a nontrivial solution one gets:

[math]\displaystyle{ -\tan(\lambda_n L)+\tanh(\lambda_n L)=0\, }[/math]

The first three roots are :

[math]\displaystyle{ \lambda_1 L = 0, \lambda_3 L = 3.925, \lambda_5 L = 7.068\, }[/math]

Anti-symmetric natural modes can be written in normalized form as :

[math]\displaystyle{ X_{2n+1}(x) = \frac{1}{\sqrt{2L}}\left( \frac{\sin(\lambda_{2n+1} x)}{\sin(\lambda_{2n+1} L)}+\frac{\sinh(\lambda_{2n+1} x)}{\sinh(\lambda_{2n+1} L)} \right ) \,\,\,n\geq 1 }[/math]

where the eigenfunctions have been chosen so that their inner products equal the Kronecker delta.

Equations for a beam

There are various beam theories that can be used to describe the motion of the beam. The simplest theory is the Bernoulli-Euler Beam theory (other beam theories include the Timoshenko Beam theory and Reddy-Bickford Beam theory where shear deformation of higher order is considered). For a Bernoulli-Euler Beam, the equation of motion is given by the following

[math]\displaystyle{ \partial_x^2\left(\beta(x)\partial_x^2 \zeta\right) + \gamma(x) \partial_t^2 \zeta = p }[/math]

where [math]\displaystyle{ \beta(x) }[/math] is the non dimensionalised flexural rigidity, and [math]\displaystyle{ \gamma }[/math] is non-dimensionalised linear mass density function. Note that this equations simplifies if the plate has constant properties (and that [math]\displaystyle{ h }[/math] is the thickness of the plate, [math]\displaystyle{ p }[/math] is the pressure and [math]\displaystyle{ \zeta }[/math] is the plate vertical displacement) .

The edges of the plate can satisfy a range of boundary conditions. The natural boundary condition (i.e. free-edge boundary conditions).

[math]\displaystyle{ \partial_x^2 \zeta = 0, \,\,\partial_x^3 \zeta = 0 }[/math]

at the edges of the plate.

The problem is subject to the initial conditions

[math]\displaystyle{ \zeta(x,0)=f(x) \,\! }[/math]
[math]\displaystyle{ \partial_t \zeta(x,0)=g(x) }[/math]

Solution for a uniform beam in eigenfunctions

If the beam is uniform the equations can be written as

[math]\displaystyle{ \beta \frac{\partial^{4}\zeta}{\partial x^{4}} + \gamma \frac{\partial^{2}\zeta}{\partial t^{2}}=0 }[/math]

We can express the deflection as the series

[math]\displaystyle{ \zeta(x,t)=\sum_{n=0}^{\infty} A_n X_n(x) \cos(k_n t) + \sum_{n=2}^{\infty}B_n X_n(x) \frac{\sin(k_n t)}{k_n} }[/math]

where [math]\displaystyle{ X_n }[/math] are the Eigenfunctions for a Uniform Free Beam and [math]\displaystyle{ k_m = \lambda^2_n \sqrt{\beta/\gamma} }[/math] where [math]\displaystyle{ \lambda_n }[/math] are the eigenfunctions.

Then [math]\displaystyle{ A_n \,\! }[/math] and [math]\displaystyle{ B_n \,\! }[/math] can be found using orthogonality properties:

[math]\displaystyle{ A_n=\frac{\int_{-L}^{L}f(x)X_n(x)\mathrm{d}x}{\int_{-L}^{L}X_n(x)X_n(x)\mathrm{d}x} \,\! }[/math]
[math]\displaystyle{ B_n=\frac{\int_{-L}^{L}g(x)X_n(x)\mathrm{d}x}{\int_{-L}^{L}X_n(x)X_n(x)\mathrm{d}x} }[/math]

Note that we cannot give the plate an initial velocity that contains a rigid body motions which is why the sum starts at [math]\displaystyle{ n=2 }[/math] for time derivative.


Matlab Code

A program to calculate the eigenvalues can be found here beam_ev.m

A program to calculate the eigenvectors can be found here beam_em.m