Difference between revisions of "Template:Incident plane wave 2d definition"

From WikiWaves
Jump to navigationJump to search
Line 5: Line 5:
 
</math></center>
 
</math></center>
 
where <math>A </math> is the wave amplitude (in potential) <math>k_0 </math> is  
 
where <math>A </math> is the wave amplitude (in potential) <math>k_0 </math> is  
the positive imaginary solution of the [[Dispersion Relation for a Free Surface]]
+
the negative imaginary solution of the [[Dispersion Relation for a Free Surface]]
(note we are assuming that the time dependence is of the form <math>\exp(\mathrm{i}\omega t) </math>)
+
(note we are assuming that the time dependence is of the form <math>\exp(-\mathrm{i}\omega t) </math>)
 
and
 
and
 
<center><math>
 
<center><math>
 
  \phi_0(z) =\frac{\cos k_0(z+h)}{\cos k_0 h}
 
  \phi_0(z) =\frac{\cos k_0(z+h)}{\cos k_0 h}
 
</math></center>
 
</math></center>

Revision as of 10:43, 28 April 2010

[math]\displaystyle{ \phi^{\mathrm{I}}\, }[/math] is a plane wave travelling in the [math]\displaystyle{ x }[/math] direction,

[math]\displaystyle{ \phi^{\mathrm{I}}(x,z)=A \phi_0(z) e^{-k_0 x} }[/math]

where [math]\displaystyle{ A }[/math] is the wave amplitude (in potential) [math]\displaystyle{ k_0 }[/math] is the negative imaginary solution of the Dispersion Relation for a Free Surface (note we are assuming that the time dependence is of the form [math]\displaystyle{ \exp(-\mathrm{i}\omega t) }[/math]) and

[math]\displaystyle{ \phi_0(z) =\frac{\cos k_0(z+h)}{\cos k_0 h} }[/math]