Difference between revisions of "Template:Frequency domain equations for a floating plate"
From WikiWaves
Jump to navigationJump to searchLine 1: | Line 1: | ||
If we make the assumption of [[Frequency Domain Problem]] that everything is proportional to | If we make the assumption of [[Frequency Domain Problem]] that everything is proportional to | ||
− | <math>\exp (\mathrm{i}\omega t)\,</math> the equations become | + | <math>\exp (-\mathrm{i}\omega t)\,</math> the equations become |
<center><math> | <center><math> | ||
− | \mathrm{i}\omega\zeta = \partial_z\phi , \ z=0; </math></center> | + | -\mathrm{i}\omega\zeta = \partial_z\phi , \ z=0; </math></center> |
− | <center><math> \rho g\zeta | + | <center><math> \rho g\zeta - \mathrm{i}\omega\rho \phi |
= D \partial_x^4 \eta -\omega^2 \rho_i h \zeta, \ z=0; </math></center> | = D \partial_x^4 \eta -\omega^2 \rho_i h \zeta, \ z=0; </math></center> | ||
<center><math> | <center><math> | ||
Line 24: | Line 24: | ||
<center><math> | <center><math> | ||
\beta \partial_x^4 \zeta | \beta \partial_x^4 \zeta | ||
− | + \left( 1 - \gamma\alpha \right) \zeta = | + | + \left( 1 - \gamma\alpha \right) \zeta = -\mathrm{i} \sqrt{\alpha}\phi, \;\; |
z = 0. | z = 0. | ||
</math></center> | </math></center> | ||
<center><math> | <center><math> | ||
− | \mathrm{i}\omega\zeta = \partial_z\phi , \ z=0; </math></center> | + | -\mathrm{i}\omega\zeta = \partial_z\phi , \ z=0; </math></center> |
Revision as of 10:39, 28 April 2010
If we make the assumption of Frequency Domain Problem that everything is proportional to [math]\displaystyle{ \exp (-\mathrm{i}\omega t)\, }[/math] the equations become
where [math]\displaystyle{ \zeta }[/math] is the surface displacement and [math]\displaystyle{ \phi }[/math] is the velocity potential in the frequency domain.
These equations can be simplified by defining [math]\displaystyle{ \alpha = \omega^2/g }[/math], [math]\displaystyle{ \beta = D/\rho g }[/math] and [math]\displaystyle{ \gamma = \rho_i h/\rho }[/math] to obtain