Difference between revisions of "Wave Scattering By A Vertical Circular Cylinder"
Line 11: | Line 11: | ||
<center><math> \Phi_I = \mathrm{Re} \left\{\phi_I e^{i\omega t} \right \} \,</math></center> | <center><math> \Phi_I = \mathrm{Re} \left\{\phi_I e^{i\omega t} \right \} \,</math></center> | ||
− | <center><math> \phi_I = \frac{i g A}{\omega} \frac{\cosh | + | <center><math> \phi_I = \frac{i g A}{\omega} \frac{\cosh k(z+h)}{\cosh k h} e^{-ikx} </math></center> |
Let the diffraction potential be | Let the diffraction potential be | ||
− | <center><math> \phi_7 = \frac{i g A}{\omega} \frac{\cosh | + | <center><math> \phi_7 = \frac{i g A}{\omega} \frac{\cosh k(z+h)}{\cos k h} \psi(x,y) </math></center> |
For <math>\phi_7\,</math> to satisfy the 3D Laplace equation, it is easy to show that <math>\psi\,</math> must satisfy the Helmholtz equation: | For <math>\phi_7\,</math> to satisfy the 3D Laplace equation, it is easy to show that <math>\psi\,</math> must satisfy the Helmholtz equation: | ||
− | <center><math> \left( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + | + | <center><math> \left( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + k^2 \right) \psi = 0\, </math></center> |
In polar coordinates: | In polar coordinates: | ||
Line 32: | Line 32: | ||
The Helmholtz equation takes the form: | The Helmholtz equation takes the form: | ||
− | <center><math> \left( \frac{\partial^2}{\partial R^2} + \frac{1}{R} \frac{\partial}{\partial R} + \frac{1}{R^2} \frac{\partial^2}{\partial\theta^2} + | + | <center><math> \left( \frac{\partial^2}{\partial R^2} + \frac{1}{R} \frac{\partial}{\partial R} + \frac{1}{R^2} \frac{\partial^2}{\partial\theta^2} + k^2 \right) \psi = 0 \, </math></center> |
On the cylinder: | On the cylinder: | ||
Line 40: | Line 40: | ||
or | or | ||
− | <center><math> \frac{\partial\psi}{\partial R} = - \frac{\partial}{\partial R} \left( e^{- | + | <center><math> \frac{\partial\psi}{\partial R} = - \frac{\partial}{\partial R} \left( e^{-ikx} \right) = -\frac{\partial}{\partial R} \left( e^{-ikE\cos R} \right) </math></center> |
Here we make use of the familiar identity: | Here we make use of the familiar identity: | ||
− | <center><math> e^{- | + | <center><math> e^{-ikR\cos\theta} = \sum_{m=0}^{\infty} \epsilon_m J_m ( k R ) \cos m \theta </math></center> |
<center><math> \epsilon_m = \begin{Bmatrix} | <center><math> \epsilon_m = \begin{Bmatrix} | ||
Line 53: | Line 53: | ||
Try: | Try: | ||
− | <center><math> \psi(R,\theta) = \sum_{m=0}^{\infty} A_m F_m ( | + | <center><math> \psi(R,\theta) = \sum_{m=0}^{\infty} A_m F_m ( k R ) \cos m \theta \, </math></center> |
Upon substitution in Helmholtz's equation we obtain: | Upon substitution in Helmholtz's equation we obtain: | ||
− | <center><math> \left( \frac{\partial^2}{\partial R^2} + \frac{1}{R} \frac{\partial}{\partial R} - \frac{m^2}{R^2} + | + | <center><math> \left( \frac{\partial^2}{\partial R^2} + \frac{1}{R} \frac{\partial}{\partial R} - \frac{m^2}{R^2} + k^2 \right) F_m ( k R ) = 0 </math></center> |
This is the Bessel equation of order m accepting as solutions linear combinations of the Bessel functions | This is the Bessel equation of order m accepting as solutions linear combinations of the Bessel functions | ||
<center><math> \begin{Bmatrix} | <center><math> \begin{Bmatrix} | ||
− | J_m ( | + | J_m ( k R ) \\ |
− | Y_m ( | + | Y_m ( k R ) |
\end{Bmatrix} </math></center> | \end{Bmatrix} </math></center> | ||
Line 70: | Line 70: | ||
As <math> R \to \infty\,</math>: | As <math> R \to \infty\,</math>: | ||
− | <center><math> \psi(R,\theta) \sim e^{- | + | <center><math> \psi(R,\theta) \sim e^{-ikR + i\omega t} \,</math></center> |
Also as <math> R \to \infty\, </math>: | Also as <math> R \to \infty\, </math>: | ||
− | <center><math> J_m ( | + | <center><math> J_m ( k R ) \sim \left( \frac{2}{\pi k R} \right)^{1/2} \cos \left( k R - \frac{1}{2} m \pi - \frac{\pi}{4} \right) </math></center> |
− | <center><math> Y_m ( | + | <center><math> Y_m ( k R ) \sim \left( \frac{2}{\pi k R} \right)^{1/2} \sin \left( k R - \frac{1}{2} m \pi - \frac{\pi}{4} \right) </math></center> |
Hence the Hankel function: | Hence the Hankel function: | ||
− | <center><math> H_m^{(2)} ( | + | <center><math> H_m^{(2)} ( k R ) = J_m ( k R ) - i Y_m ( k R ) \,</math></center> |
− | <center><math> \sim \left( \frac{2}{\pi | + | <center><math> \sim \left( \frac{2}{\pi k R} \right)^{1/2} e^{-i \left( k R - \frac{1}{2} m \pi - \frac{\pi}{4} \right)} </math></center> |
Satisfies the far field condition required by <math> \psi(R,\theta) \,</math>. So we set: | Satisfies the far field condition required by <math> \psi(R,\theta) \,</math>. So we set: | ||
− | <center><math> \psi(r,\theta) = \sum_{m=0}^{\infty} \epsilon_m A_m H_m^{(2)} ( | + | <center><math> \psi(r,\theta) = \sum_{m=0}^{\infty} \epsilon_m A_m H_m^{(2)} ( k R ) \cos m \theta </math></center> |
with the constants <math> A_m \,</math> to be determined. The cylinder condition requires: | with the constants <math> A_m \,</math> to be determined. The cylinder condition requires: | ||
− | <center><math> \left. \frac{\partial\psi}{\partial R} \right|_{R=a} = - \frac{\partial}{\partial R} \sum_{m=0}^{\infty} \epsilon_m J_m ( | + | <center><math> \left. \frac{\partial\psi}{\partial R} \right|_{R=a} = - \frac{\partial}{\partial R} \sum_{m=0}^{\infty} \epsilon_m J_m ( k R ) \left.\cos m \theta \right|_{r=a} </math></center> |
It follows that: | It follows that: | ||
− | <center><math> A_m {H_m^{(2)}}^' ( | + | <center><math> A_m {H_m^{(2)}}^' (k a) = - J_m^' (k a) \,</math></center> |
or: | or: | ||
− | <center><math> A_m = - \frac{J_m^' ( | + | <center><math> A_m = - \frac{J_m^' ( k a ) }{{H_m^{(2)}}^' (k a)} \,</math></center> |
where <math> (')\,</math> denotes derivatives with respect to the argument. The solution for the total velocity potential follows in the form | where <math> (')\,</math> denotes derivatives with respect to the argument. The solution for the total velocity potential follows in the form | ||
− | <center><math> (\psi+x)(r,\theta) = \sum_{m=0}^{\infty} \epsilon_m \left[ J_m ( | + | <center><math> (\psi+x)(r,\theta) = \sum_{m=0}^{\infty} \epsilon_m \left[ J_m (k R) - \frac{J_m^'(k a)}{{H_m^{(2)}}^'(k a)} H_m^{(2)} (k a) \right] \cos m \theta </math></center> |
And the total original potential follows: | And the total original potential follows: | ||
− | <center><math> \phi = \phi_I + \phi_7 = \frac{i g A}{\omega} \frac{\cosh | + | <center><math> \phi = \phi_I + \phi_7 = \frac{i g A}{\omega} \frac{\cosh k (z+h)}{\cosh k h } (\psi+x) (r,\theta) </math></center> |
− | In the limit as <math> h \to \infty \quad \frac{\cosh | + | In the limit as <math> h \to \infty \quad \frac{\cosh k (z+h)}{k h} \longrightarrow e^{k z} \,</math> and the series expansion solution survives. |
The total complex potential, incident and scattered was derived above. The hydrodynamic pressure follows from Bernoulli: | The total complex potential, incident and scattered was derived above. The hydrodynamic pressure follows from Bernoulli: | ||
Line 120: | Line 120: | ||
<center><math> X_1 = \iint_{S_B} P n_1 \mathrm{d}S = \mathrm{Re} \left\{ \mathbf{X}_1 e^{i\omega t} \right\} </math></center> | <center><math> X_1 = \iint_{S_B} P n_1 \mathrm{d}S = \mathrm{Re} \left\{ \mathbf{X}_1 e^{i\omega t} \right\} </math></center> | ||
− | <center><math> \mathbf{X}_1 = \rho \int_{-\infty}^0 \mathrm{d} | + | <center><math> \mathbf{X}_1 = \rho \int_{-\infty}^0 \mathrm{d}z \int_0^{2\pi} a \mathrm{d}\theta \left( - i \omega \frac{i g A}{\omega} \right) e^{k z} n_1 (\psi + x)_{R=a} </math></center> |
Simple algebra in this case of water of infinite depth leads to the expression. | Simple algebra in this case of water of infinite depth leads to the expression. |
Revision as of 16:56, 8 December 2009
Wave and Wave Body Interactions | |
---|---|
Current Chapter | Wave Scattering By A Vertical Circular Cylinder |
Next Chapter | Forward-Speed Ship Wave Flows |
Previous Chapter | Long Wavelength Approximations |
This important flow accepts a closed-form analytical solution for arbitrary values of the wavelength [math]\displaystyle{ \lambda\, }[/math]. This was shown to be the case by McCamy and Fuchs 1954 using separation of variables
Let the diffraction potential be
For [math]\displaystyle{ \phi_7\, }[/math] to satisfy the 3D Laplace equation, it is easy to show that [math]\displaystyle{ \psi\, }[/math] must satisfy the Helmholtz equation:
In polar coordinates:
The Helmholtz equation takes the form:
On the cylinder:
or
Here we make use of the familiar identity:
Try:
Upon substitution in Helmholtz's equation we obtain:
This is the Bessel equation of order m accepting as solutions linear combinations of the Bessel functions
The proper linear combination in the present problem is suggested by the radiation condition that [math]\displaystyle{ \psi\, }[/math] must satisfy:
As [math]\displaystyle{ R \to \infty\, }[/math]:
Also as [math]\displaystyle{ R \to \infty\, }[/math]:
Hence the Hankel function:
Satisfies the far field condition required by [math]\displaystyle{ \psi(R,\theta) \, }[/math]. So we set:
with the constants [math]\displaystyle{ A_m \, }[/math] to be determined. The cylinder condition requires:
It follows that:
or:
where [math]\displaystyle{ (')\, }[/math] denotes derivatives with respect to the argument. The solution for the total velocity potential follows in the form
And the total original potential follows:
In the limit as [math]\displaystyle{ h \to \infty \quad \frac{\cosh k (z+h)}{k h} \longrightarrow e^{k z} \, }[/math] and the series expansion solution survives.
The total complex potential, incident and scattered was derived above. The hydrodynamic pressure follows from Bernoulli:
The surge exciting force is given by
Simple algebra in this case of water of infinite depth leads to the expression.
Ocean Wave Interaction with Ships and Offshore Energy Systems