Difference between revisions of "Waves reflecting off a vertical wall"

From WikiWaves
Jump to navigationJump to search
Line 1: Line 1:
 
[[Image:Breakwater.jpg|thumb|right|600px|Breakwater]]
 
[[Image:Breakwater.jpg|thumb|right|600px|Breakwater]]
 
Waves reflecting off a vertical wall is one of the few very important analytical solutions of regular waves interacting with solid boundaries seen in practice. The other is wavemaker theory.
 
Waves reflecting off a vertical wall is one of the few very important analytical solutions of regular waves interacting with solid boundaries seen in practice. The other is wavemaker theory.
Let the incident wave elevation be
+
 
<center><math> \zeta_I = \mathrm{Re} \left \{ A_I e^{-\mathrm{i} k x+\mathrm{i}\omega t} \right \} </math></center>
+
{{incident plane wave}}
and the reflected is
+
 
<center><math> \zeta_R = \mathrm{Re} \left \{ A_R e^{\mathrm{i}k x+\mathrm{i}\omega t} \right \} </math></center>
+
The refl
where the sign of the <math> e^{\mathrm{i} k x}\, </math> term has been reversed to denote a wave propagating to the left. <math> A_R\,</math> can be complex in order to allow for phase differences.
 
  
 
The corresponding velocity potentials are
 
The corresponding velocity potentials are

Revision as of 21:45, 3 April 2010

Breakwater

Waves reflecting off a vertical wall is one of the few very important analytical solutions of regular waves interacting with solid boundaries seen in practice. The other is wavemaker theory.

The equation is subject to some radiation conditions at infinity. We assume the following. [math]\displaystyle{ \phi^{\mathrm{I}}\, }[/math] is a plane wave travelling in the [math]\displaystyle{ x }[/math] direction,

[math]\displaystyle{ \phi^{\mathrm{I}}(x,z)=A \phi_0(z) e^{\mathrm{i} k x} \, }[/math]

where [math]\displaystyle{ A }[/math] is the wave amplitude (in potential) [math]\displaystyle{ \mathrm{i} k }[/math] is the positive imaginary solution of the Dispersion Relation for a Free Surface (note we are assuming that the time dependence is of the form [math]\displaystyle{ \exp(-\mathrm{i}\omega t) }[/math]) and

[math]\displaystyle{ \phi_0(z) =\frac{\cosh k(z+h)}{\cosh k h} }[/math]

The refl

The corresponding velocity potentials are

[math]\displaystyle{ \Phi_I = \mathrm{Re} \left \{ \frac{\mathrm{i} gA_I}{\omega} \frac{\cosh k k h (z+h)}{\cosh k h} e^{-\mathrm{i} k x + \mathrm{i}\omega t} \right \} }[/math]
[math]\displaystyle{ \Phi_R = \mathrm{Re} \left \{ \frac{\mathrm{i} gA_R}{\omega} \frac{\cosh k (z+h)}{\cosh k h} e^{\mathrm{i} k x +\mathrm{i}\omega t} \right \} }[/math]

On [math]\displaystyle{ x = 0 \, }[/math]:

[math]\displaystyle{ \frac{\partial}{\partial x} \left( \Phi_I + \Phi_R \right) = 0 }[/math]

or

[math]\displaystyle{ - \mathrm{i} k A_I + \mathrm{i} k A_R \Longrightarrow A_R = A_I \equiv A }[/math]

The resulting total velocity potential is

[math]\displaystyle{ \Phi = \Phi_I + \Phi_R = \mathrm{Re} \left \{ \frac{\mathrm{i}gA_R}{\omega} \frac{\cosh k (z+h}{\cosh kh} e^{\mathrm{i}\omega t} \left( e^{\mathrm{i}kx} + e^{-\mathrm{i}kx} \right) \right \} }[/math]
[math]\displaystyle{ = 2 A \mathrm{Re} \left \{ \frac{\mathrm{i}g}{\omega} \frac{\cosh k (z+h)}{\cosh kh} \cos kx e^{\mathrm{i}\omega t} \right \} }[/math]

The resulting standing-wave elevation is:

[math]\displaystyle{ \zeta = \zeta_I + \zeta_R = 2 A \cos k x \cos \omega t \, }[/math]