Difference between revisions of "Waves reflecting off a vertical wall"

From WikiWaves
Jump to navigationJump to search
Line 3: Line 3:
  
 
{{incident plane wave}}
 
{{incident plane wave}}
 +
 +
On <math> x = 0 \, </math>:
 +
<center><math> \partial_n\phi = \frac{\partial}{\partial x}
 +
\left( \phi^{\mathrm{I}} + \phi^{mathrm{D}} \right) = 0 </math></center>
 +
where <math>\phi^{mathrm{D}}</math> is the diffraction potential
 +
or
 +
<center><math> - \mathrm{i} k A_I + \mathrm{i} k A_R \Longrightarrow A_R = A_I \equiv A </math></center>
 +
  
 
The refl
 
The refl
Line 11: Line 19:
 
<center><math> \Phi_R = \mathrm{Re} \left \{ \frac{\mathrm{i} gA_R}{\omega} \frac{\cosh k (z+h)}{\cosh k h}  
 
<center><math> \Phi_R = \mathrm{Re} \left \{ \frac{\mathrm{i} gA_R}{\omega} \frac{\cosh k (z+h)}{\cosh k h}  
 
e^{\mathrm{i} k x +\mathrm{i}\omega t} \right \} </math></center>
 
e^{\mathrm{i} k x +\mathrm{i}\omega t} \right \} </math></center>
On <math> x = 0 \, </math>:
+
 
<center><math> \frac{\partial}{\partial x} \left( \Phi_I + \Phi_R \right) = 0 </math></center>
+
 
or
 
<center><math> - \mathrm{i} k A_I + \mathrm{i} k A_R \Longrightarrow A_R = A_I \equiv A </math></center>
 
  
 
The resulting total velocity potential is
 
The resulting total velocity potential is

Revision as of 21:49, 3 April 2010

Breakwater

Waves reflecting off a vertical wall is one of the few very important analytical solutions of regular waves interacting with solid boundaries seen in practice. The other is wavemaker theory.

The equation is subject to some radiation conditions at infinity. We assume the following. [math]\displaystyle{ \phi^{\mathrm{I}}\, }[/math] is a plane wave travelling in the [math]\displaystyle{ x }[/math] direction,

[math]\displaystyle{ \phi^{\mathrm{I}}(x,z)=A \phi_0(z) e^{\mathrm{i} k x} \, }[/math]

where [math]\displaystyle{ A }[/math] is the wave amplitude (in potential) [math]\displaystyle{ \mathrm{i} k }[/math] is the positive imaginary solution of the Dispersion Relation for a Free Surface (note we are assuming that the time dependence is of the form [math]\displaystyle{ \exp(-\mathrm{i}\omega t) }[/math]) and

[math]\displaystyle{ \phi_0(z) =\frac{\cosh k(z+h)}{\cosh k h} }[/math]

On [math]\displaystyle{ x = 0 \, }[/math]:

[math]\displaystyle{ \partial_n\phi = \frac{\partial}{\partial x} \left( \phi^{\mathrm{I}} + \phi^{mathrm{D}} \right) = 0 }[/math]

where [math]\displaystyle{ \phi^{mathrm{D}} }[/math] is the diffraction potential or

[math]\displaystyle{ - \mathrm{i} k A_I + \mathrm{i} k A_R \Longrightarrow A_R = A_I \equiv A }[/math]


The refl

The corresponding velocity potentials are

[math]\displaystyle{ \Phi_I = \mathrm{Re} \left \{ \frac{\mathrm{i} gA_I}{\omega} \frac{\cosh k k h (z+h)}{\cosh k h} e^{-\mathrm{i} k x + \mathrm{i}\omega t} \right \} }[/math]
[math]\displaystyle{ \Phi_R = \mathrm{Re} \left \{ \frac{\mathrm{i} gA_R}{\omega} \frac{\cosh k (z+h)}{\cosh k h} e^{\mathrm{i} k x +\mathrm{i}\omega t} \right \} }[/math]


The resulting total velocity potential is

[math]\displaystyle{ \Phi = \Phi_I + \Phi_R = \mathrm{Re} \left \{ \frac{\mathrm{i}gA_R}{\omega} \frac{\cosh k (z+h}{\cosh kh} e^{\mathrm{i}\omega t} \left( e^{\mathrm{i}kx} + e^{-\mathrm{i}kx} \right) \right \} }[/math]
[math]\displaystyle{ = 2 A \mathrm{Re} \left \{ \frac{\mathrm{i}g}{\omega} \frac{\cosh k (z+h)}{\cosh kh} \cos kx e^{\mathrm{i}\omega t} \right \} }[/math]

The resulting standing-wave elevation is:

[math]\displaystyle{ \zeta = \zeta_I + \zeta_R = 2 A \cos k x \cos \omega t \, }[/math]